cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380646 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x)/(1 + x)^2 ).

Original entry on oeis.org

1, 4, 46, 932, 27568, 1080432, 52916176, 3115326496, 214470890496, 16914853191680, 1504252282653184, 148956086481767424, 16256865070022066176, 1938988214539948730368, 250943399365390735104000, 35026523834624205803491328, 5245178283068781060488298496, 838841884254236846183525646336
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=18; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-2*x]/(1 + x)^2 ,{x,0,nmax}]],x]Range[0,nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
  • PARI
    a(n) = 2*n!*sum(k=0, n, (2*n+2)^(k-1)*binomial(2*n+2, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * exp(2 * x * A(x)).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377892.
a(n) = 2 * n! * Sum_{k=0..n} (2*n+2)^(k-1) * binomial(2*n+2,n-k)/k!.

A380648 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-4*x)/(1 + x)^4 ).

Original entry on oeis.org

1, 8, 188, 7816, 475096, 38289504, 3857806144, 467330651456, 66209818738176, 10747317030192640, 1967261819870112256, 400989528160028255232, 90087157573721153554432, 22119056538323287540637696, 5893098619063477612068864000, 1693364632974231188010697990144
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=16; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-4*x]/(1 + x)^4, {x, 0, nmax}]], x]Range[0, nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
  • PARI
    a(n) = 4*n!*sum(k=0, n, (4*n+4)^(k-1)*binomial(4*n+4, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * exp(4 * x * A(x)).
a(n) = 4 * n! * Sum_{k=0..n} (4*n+4)^(k-1) * binomial(4*n+4,n-k)/k!.

A380946 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^3 * exp(-3*x) ).

Original entry on oeis.org

1, 6, 111, 3678, 179073, 11588688, 938905551, 91542271824, 10444685410881, 1365936450693120, 201503447217869679, 33108736185915906816, 5997057218957213126721, 1187319940110958086623232, 255104922613608981003351375, 59120580081196768991316314112
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=3, r=3, s=3, t=0, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(3*x*A(x))/(1 - x*A(x))^3.
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A380724.
a(n) = 3 * n! * Sum_{k=0..n} (3*n+3)^(k-1) * binomial(4*n-k+2,n-k)/k!.
Showing 1-3 of 3 results.