A152559
Largest term in row n of triangle A152555.
Original entry on oeis.org
1, 2, 7, 42, 495, 7436, 153361, 3853322, 116503839, 4127612326, 167061660005, 7671346786170, 392298901133895, 22113791358359574, 1365967717507556804, 91549507266620360316, 6624242349107514460269, 514871138228210665592112
Offset: 0
-
{a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); vecsort(Vec(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))))[n*(n-1)/2+1]}
A152550
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2), as a triangle read by rows.
Original entry on oeis.org
1, 1, 3, 2, 12, 16, 16, 5, 55, 110, 170, 180, 130, 70, 14, 273, 728, 1443, 2145, 2640, 2614, 2200, 1485, 783, 288, 42, 1428, 4760, 11312, 20657, 32032, 42833, 50477, 52934, 49441, 41069, 29876, 19019, 10010, 4158, 1155, 132, 7752, 31008, 85272
Offset: 0
Triangle begins:
1;
1;
3,2;
12,16,16,5;
55,110,170,180,130,70,14;
273,728,1443,2145,2640,2614,2200,1485,783,288,42;
1428,4760,11312,20657,32032,42833,50477,52934,49441,41069,29876,19019,10010,4158,1155,132;
7752,31008,85272,181356,328440,521152,745416,969000,1159060,1278996,1307556,1238368,1085488,877240,650052,437164,262964,138320,60424,20592,4576,429;...
where row sums = (2*n+1)^(n-1) (A052750).
Row sums at q=-1 = (2*n+1)^[(n-1)/2] (A152551).
The generating function starts:
A(x,q) = 1 + x + (3 + 2*q)*x^2/faq(2,q) + (12 + 16*q + 16*q^2 + 5*q^3)*x^3/faq(3,q) + (55 + 110*q + 170*q^2 + 180*q^3 + 130*q^4 + 70*q^5 + 14*q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q)^2, q) where q-exponential series: e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3),...
Special cases.
q=0: A(x,0) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 +... (A001764)
q=1: A(x,1) = 1 + x + 5/2*x^2 + 49/6*x^3 + 729/24*x^4 + 14641/120*x^5 +...
q=2: A(x,2) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
q=3: A(x,3) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
-
{T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
A152556
a(n) = 2*(2*n+2)^floor((n-1)/2).
Original entry on oeis.org
1, 2, 2, 16, 20, 288, 392, 8192, 11664, 320000, 468512, 15925248, 23762752, 963780608, 1458000000, 68719476736, 105046700288, 5642219814912, 8695584276992, 524288000000000, 813342767698944, 54394721876836352, 84841494965553152, 6232805962420322304
Offset: 0
-
[2*(2*n+2)^(Floor((n-1)/2)): n in [0..30]]; // G. C. Greubel, Nov 17 2017
-
Table[2(2n+2)^Floor[(n-1)/2],{n,0,30}] (* Harvey P. Dale, Nov 13 2012 *)
-
a(n)=2*(2*n+2)^((n-1)\2)
A152557
Coefficients in a q-analog of the function LambertW(-2x)/(-2x) at q=2.
Original entry on oeis.org
1, 2, 17, 394, 21377, 2537724, 637139804, 332102399042, 355527029604321, 776504491956507890, 3445063827264105259985, 30955227335240072514768936, 562107762991597803740407081852, 20594660519301092842327319372549024
Offset: 0
G.f.: A(x) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
-
{a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); subst(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1)),q,2)}
A152558
Coefficients in a q-analog of the function LambertW(-2x)/(-2x) at q=3.
Original entry on oeis.org
1, 2, 22, 912, 126692, 56277344, 78192313656, 335781903409152, 4424572027813470736, 178044609358672673825280, 21805611052892733414074516064, 8108006645142880473904973170212864
Offset: 0
G.f.: A(x) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
-
{a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); subst(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1)),q,3)}
Showing 1-5 of 5 results.
Comments