A152554
Largest term in row n of triangle A152550.
Original entry on oeis.org
1, 1, 3, 16, 180, 2640, 52934, 1307556, 39067428, 1369499060, 54995284784, 2507211396061, 127388480252917, 7144814127814222, 439553511977812220, 29347225935730588372, 2116793087420823777580, 164035715631344596393196
Offset: 0
-
{a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); vecsort(Vec(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))))[n*(n-1)/2+1]}
A152555
Coefficients in a q-analog of the function LambertW(-2*x)/(-2*x), as a triangle read by rows.
Original entry on oeis.org
1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
Offset: 0
Triangle begins:
1;
2;
7,5;
30,42,42,14;
143,297,462,495,363,198,42;
728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
-
{T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
A152800
Irregular triangle read by rows: the q-analog of the Euler numbers; expansion of the arithmetic inverse of the q-cosine of x.
Original entry on oeis.org
1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 3, 5, 8, 10, 10, 9, 7, 5, 2, 1, 0, 0, 0, 1, 4, 10, 21, 36, 55, 78, 101, 122, 138, 145, 143, 134, 117, 95, 72, 50, 32, 18, 9, 3, 1, 0, 0, 0, 0, 1, 5, 16, 41, 87, 164, 283, 452, 679, 967, 1311, 1700, 2118, 2540, 2937, 3282, 3546, 3706, 3751, 3676, 3487
Offset: 0
Nonzero coefficients in row n range from x^(n-1) to x^(2n(n-1)) for n>0.
Triangle begins:
1;
1;
0,1,2,1,1;
0,0,1,3,5,8,10,10,9,7,5,2,1;
0,0,0,1,4,10,21,36,55,78,101,122,138,145,143,134,117,95,72,50,32,18,9,3,1;
0,0,0,0,1,5,16,41,87,164,283,452,679,967,1311,1700,2118,2540,2937,3282,3546,3706,3751,3676,3487,3202,2842,2436,2014,1602,1223,894,622,409,253,145,76,35,14,4,1;
...
Explicit expansion of g.f.:
1/cos_q(x,q) = 1 + x^2/faq(2,q) + x^4*(q + 2*q^2 + q^3 + q^4)/faq(4,q) +
x^6*(q^2 + 3*q^3 + 5*q^4 + 8*q^5 + 10*q^6 + 10*q^7 + 9*q^8 + 7*q^9 + 5*q^10 + 2*q^11 + q^12)/faq(6,q) +
x^8*(q^3 + 4*q^4 + 10*q^5 + 21*q^6 + 36*q^7 + 55*q^8 + 78*q^9 + 101*q^10 + 122*q^11 + 138*q^12 + 145*q^13 + 143*q^14 + 134*q^15 + 117*q^16 + 95*q^17 + 72*q^18 + 50*q^19 + 32*q^20 + 18*q^21 + 9*q^22 + 3*q^23 + q^24)/faq(8,q) +...
- Paul D. Hanna, Table of n, a(n) for n = 0..2255, as a flattened triangle of rows 0..15
- M. M. Graev, Einstein equations for invariant metrics on flag spaces and their Newton polytopes, Transactions of the Moscow Mathematical Society, 2014, pp. 13-68. Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 1.
- Eric Weisstein, q-Cosine Function from MathWorld.
- Eric Weisstein, q-Factorial from MathWorld.
-
{T(n,k)=polcoeff(polcoeff(1/sum(m=0,n,(-1)^m*x^(2*m)/prod(j=1,2*m,(q^j-1)/(q-1))+x*O(x^(2*n+1))),2*n,x)*prod(j=1,2*n,(q^j-1)/(q-1)),k,q)}
for(n=0,8,for(k=0,2*n*(n-1),print1(T(n,k),", "));print(""))
A152551
a(n) = (2*n+1)^floor((n-1)/2).
Original entry on oeis.org
1, 1, 1, 7, 9, 121, 169, 3375, 4913, 130321, 194481, 6436343, 9765625, 387420489, 594823321, 27512614111, 42618442977, 2251875390625, 3512479453921, 208728361158759, 327381934393961, 21611482313284249, 34050628916015625
Offset: 0
-
[(2*n+1)^Floor((n-1)/2): n in [0..50]]; // G. C. Greubel, Nov 16 2017
-
Table[(2n+1)^Floor[(n-1)/2],{n,0,30}] (* Harvey P. Dale, Nov 21 2011 *)
-
a(n)=(2*n+1)^((n-1)\2)
A152552
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=2.
Original entry on oeis.org
1, 1, 7, 148, 7611, 872341, 213651052, 109327540680, 115381584785027, 249159124679346991, 1095244903267253760231, 9765839519517673327876328, 176188639876138769279299798900, 6419535615261099235478072782943388
Offset: 0
G.f.: A(x) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
-
{a(n,q=2)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
A152553
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=3.
Original entry on oeis.org
1, 1, 9, 339, 44521, 19059921, 25799597265, 108657870607875, 1410396873934264497, 56078100848527445045121, 6801233273726638573734096441, 2508450630100541880792088526933139
Offset: 0
G.f.: A(x) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
-
{a(n,q=3)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
Showing 1-6 of 6 results.
Comments