cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152550 Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2), as a triangle read by rows.

Original entry on oeis.org

1, 1, 3, 2, 12, 16, 16, 5, 55, 110, 170, 180, 130, 70, 14, 273, 728, 1443, 2145, 2640, 2614, 2200, 1485, 783, 288, 42, 1428, 4760, 11312, 20657, 32032, 42833, 50477, 52934, 49441, 41069, 29876, 19019, 10010, 4158, 1155, 132, 7752, 31008, 85272
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Comments

LambertW satisfies: [LambertW(-2x)/(-2x)]^(1/2) = exp(x*LambertW(-2x)/(-2x)).

Examples

			Triangle begins:
  1;
  1;
  3,2;
  12,16,16,5;
  55,110,170,180,130,70,14;
  273,728,1443,2145,2640,2614,2200,1485,783,288,42;
  1428,4760,11312,20657,32032,42833,50477,52934,49441,41069,29876,19019,10010,4158,1155,132;
  7752,31008,85272,181356,328440,521152,745416,969000,1159060,1278996,1307556,1238368,1085488,877240,650052,437164,262964,138320,60424,20592,4576,429;...
where row sums = (2*n+1)^(n-1) (A052750).
Row sums at q=-1 = (2*n+1)^[(n-1)/2] (A152551).
The generating function starts:
A(x,q) = 1 + x + (3 + 2*q)*x^2/faq(2,q) + (12 + 16*q + 16*q^2 + 5*q^3)*x^3/faq(3,q) + (55 + 110*q + 170*q^2 + 180*q^3 + 130*q^4 + 70*q^5 + 14*q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q)^2, q) where q-exponential series: e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3),...
Special cases.
q=0: A(x,0) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 +... (A001764)
q=1: A(x,1) = 1 + x + 5/2*x^2 + 49/6*x^3 + 729/24*x^4 + 14641/120*x^5 +...
q=2: A(x,2) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
q=3: A(x,3) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
		

Crossrefs

Cf. A052750 (row sums), A001764 (column 0), A000108 (right border), A152554.
Cf. A152551 (q=-1), A152552 (q=2), A152553 (q=3).
Cf. variants: A152290, A152555.

Programs

  • PARI
    {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}

Formula

G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = [(1/x)*Series_Reversion( x/e_q(x,q)^2 )]^(1/2) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q)^2, q) and A( x/e_q(x,q)^2, q) = e_q(x,q).
G.f. at q=1: A(x,1) = (LambertW(-2*x)/(-2*x))^(1/2).
Row sums at q=+1: Sum_{k=0..n*(n-1)/2} T(n,k) = (2*n+1)^(n-1).
Row sums at q=-1: Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = (2*n+1)^[(n-1)/2].
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>=1; i.e., the n-th row sum at q = exp(2*Pi*I/n), the n-th root of unity, equals 1 for n>=1. - Vladeta Jovovic
Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} (2*n)!/(2*n-k+1)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). - Vladeta Jovovic, Dec 04 2008

A152551 a(n) = (2*n+1)^floor((n-1)/2).

Original entry on oeis.org

1, 1, 1, 7, 9, 121, 169, 3375, 4913, 130321, 194481, 6436343, 9765625, 387420489, 594823321, 27512614111, 42618442977, 2251875390625, 3512479453921, 208728361158759, 327381934393961, 21611482313284249, 34050628916015625
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Comments

Compare to row sums of triangle A152550: (2n+1)^(n-1).
Triangle A152550 lists coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2).

Crossrefs

Cf. A152550, A152552 (q=2), A152553 (q=3).

Programs

  • Magma
    [(2*n+1)^Floor((n-1)/2): n in [0..50]]; // G. C. Greubel, Nov 16 2017
  • Mathematica
    Table[(2n+1)^Floor[(n-1)/2],{n,0,30}] (* Harvey P. Dale, Nov 21 2011 *)
  • PARI
    a(n)=(2*n+1)^((n-1)\2)
    

Formula

a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*(-1)^k.

A152553 Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=3.

Original entry on oeis.org

1, 1, 9, 339, 44521, 19059921, 25799597265, 108657870607875, 1410396873934264497, 56078100848527445045121, 6801233273726638573734096441, 2508450630100541880792088526933139
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
		

Crossrefs

Cf. A152550, A152551 (q=-1), A152552 (q=2); A015001.

Programs

  • PARI
    {a(n,q=3)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}

Formula

G.f. satisfies: A(x) = e_q( x*A(x)^2, 3) and A( x/e_q(x,3)^2 ) = e_q(x,3) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,3) = q-factorial of n at q=3.
G.f.: A(x) = [(1/x)*Series_Reversion( x/e_q(x,3)^2 )]^(1/2)
a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*3^k.

A152554 Largest term in row n of triangle A152550.

Original entry on oeis.org

1, 1, 3, 16, 180, 2640, 52934, 1307556, 39067428, 1369499060, 54995284784, 2507211396061, 127388480252917, 7144814127814222, 439553511977812220, 29347225935730588372, 2116793087420823777580, 164035715631344596393196
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Comments

Compare to row sums of triangle A152550: (2n+1)^(n-1).
Triangle A152550 lists coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2).

Crossrefs

Cf. A152550, A152551 (q=-1), A152552 (q=2), A152553 (q=3).

Programs

  • PARI
    {a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); vecsort(Vec(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))))[n*(n-1)/2+1]}
Showing 1-4 of 4 results.