cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152555 Coefficients in a q-analog of the function LambertW(-2*x)/(-2*x), as a triangle read by rows.

Original entry on oeis.org

1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			Triangle begins:
  1;
  2;
  7,5;
  30,42,42,14;
  143,297,462,495,363,198,42;
  728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
  3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
  21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
		

Crossrefs

Cf. A097629 (row sums), A006013 (column 0), A000108 (right border), A152559.
Cf. A152556 (q=-1), A152557 (q=2), A152558 (q=3).
Cf. variants: A152290, A152550.

Programs

  • PARI
    {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}

Formula

G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q)^2 ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q)^2 and A( x/e_q(x,q)^2, q) = e_q(x,q)^2.
G.f. at q=1: A(x,1) = LambertW(-2*x)/(-2*x).
Row sums at q=+1: Sum_{k=0..n*(n-1)/2} T(n,k) = 2*(2*n+2)^(n-1).
Row sums at q=-1: Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = 2*(2*n+2)^[(n-1)/2].
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = 2 for n>=1; i.e., the n-th row sum at q = exp(2*Pi*I/n), the n-th root of unity, equals 2 for n>=1. - Vladeta Jovovic
Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} 2*(2*n+1)!/(2*n-k+2)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). - Vladeta Jovovic, Dec 07 2008

A152556 a(n) = 2*(2*n+2)^floor((n-1)/2).

Original entry on oeis.org

1, 2, 2, 16, 20, 288, 392, 8192, 11664, 320000, 468512, 15925248, 23762752, 963780608, 1458000000, 68719476736, 105046700288, 5642219814912, 8695584276992, 524288000000000, 813342767698944, 54394721876836352, 84841494965553152, 6232805962420322304
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Comments

Compare to row sums of triangle A152555: 2*(2n+2)^(n-1).
Triangle A152555 lists coefficients in a q-analog of the function LambertW(-2x)/(-2x).

Crossrefs

Cf. A152555, A152557(q=2), A152558 (q=3) A152559.

Programs

  • Magma
    [2*(2*n+2)^(Floor((n-1)/2)): n in [0..30]]; // G. C. Greubel, Nov 17 2017
  • Mathematica
    Table[2(2n+2)^Floor[(n-1)/2],{n,0,30}] (* Harvey P. Dale, Nov 13 2012 *)
  • PARI
    a(n)=2*(2*n+2)^((n-1)\2)
    

Formula

a(n) = Sum_{k=0..n(n-1)/2} A152555(n,k)*(-1)^k.

A152557 Coefficients in a q-analog of the function LambertW(-2x)/(-2x) at q=2.

Original entry on oeis.org

1, 2, 17, 394, 21377, 2537724, 637139804, 332102399042, 355527029604321, 776504491956507890, 3445063827264105259985, 30955227335240072514768936, 562107762991597803740407081852, 20594660519301092842327319372549024
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
		

Crossrefs

Cf. A152555, A152556(q=-1), A152558 (q=3) A152559.

Programs

  • PARI
    {a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); subst(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1)),q,2)}

Formula

G.f. satisfies: A(x) = e_q( x*A(x), 2)^2 and A( x/e_q(x,2)^2 ) = e_q(x,2)^2 where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,2) = q-factorial of n at q=2.
G.f.: A(x) = (1/x)*Series_Reversion( x/e_q(x,2)^2 )
a(n) = Sum_{k=0..n(n-1)/2} A152555(n,k)*2^k.

A152558 Coefficients in a q-analog of the function LambertW(-2x)/(-2x) at q=3.

Original entry on oeis.org

1, 2, 22, 912, 126692, 56277344, 78192313656, 335781903409152, 4424572027813470736, 178044609358672673825280, 21805611052892733414074516064, 8108006645142880473904973170212864
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
		

Crossrefs

Cf. A152555, A152556(q=-1), A152557 (q=2) A152559.

Programs

  • PARI
    {a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); subst(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1)),q,3)}

Formula

G.f. satisfies: A(x) = e_q( x*A(x), 3)^2 and A( x/e_q(x,3)^2 ) = e_q(x,3)^2 where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,3) = q-factorial of n at q=3.
G.f.: A(x) = (1/x)*Series_Reversion( x/e_q(x,3)^2 ).
a(n) = Sum_{k=0..n(n-1)/2} A152555(n,k)*3^k.
Showing 1-4 of 4 results.