A000151
Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.
Original entry on oeis.org
1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1300 (terms 1..500 from N. J. A. Sloane)
- Sølve Eidnes, Order theory for discrete gradient methods, arXiv:2003.08267 [math.NA], 2020.
- L. Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 [math.RA], 2018.
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 387
- P. Leroux and B. Miloudi, Generalisations de la formule d'Otter, Ann. Sci. Math. Quebec 16 (1992), no 1, 53-80.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
- R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97.
- R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
- S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
for n from 5 to M do
series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
R:=series(R+t4*x^n,x,n+1); od:
for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
-
terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
(* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
-
seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
A038055
Number of n-node rooted trees with nodes of 2 colors.
Original entry on oeis.org
2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194
Offset: 1
-
spec := [N, {N=Prod(bead,Set(N)), bead=Union(R,B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*
a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
end:
seq(a(n), n=1..30); # Alois P. Heinz, May 11 2014
-
a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)
-
seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018
A005750
Number of planted matched trees with n nodes.
Original entry on oeis.org
1, 1, 3, 10, 39, 160, 702, 3177, 14830, 70678, 342860, 1686486, 8393681, 42187148, 213828802, 1091711076, 5609297942, 28982708389, 150496728594, 784952565145, 4110491658233, 21602884608167, 113907912618599, 602414753753310, 3194684310627727, 16984594260224529
Offset: 1
A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 160*x^6 + 702*x^7 + ...
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.5.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.3).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1325 (terms 1..500 from Alois P. Heinz)
- Loïc Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 [math.RA], 2018.
- T. Fowler, I. Gessel, G. Labelle, P. Leroux, The specification of 2-trees, Adv. Appl. Math. 28 (2) (2002) 145-168, Table 1.
- Andrew Gainer-Dewar, Gamma-Species and the Enumeration of k-Trees, Electronic Journal of Combinatorics, Volume 19 (2012), #P45. See page 20, line -3. - From _N. J. A. Sloane_, Dec 15 2012
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 428
- R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
- R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
-
A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(add((A(n-1)(x^k))^2/(k*x^k), k=1..2*n)), x=0,2*n), polynom), x) fi end: a:= n-> coeff(series(A(n)(x), x=0, n+1), x,n): seq(a(n), n=1..23); # Alois P. Heinz, Aug 20 2008
-
max = 23; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[ Log[f[x]/x] - Sum[f[x^k]^2/(k*x^k), {k, 1, max}], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; s[2] = Solve[eqns[[1]], c[2]][[1]]; Do[eqns = Rest[eqns] /. s[k-1]; s[k] = Solve[ eqns[[1]], c[k]][[1]], {k, 3, max}]; Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 2, max}]] (* Jean-François Alcover, Oct 25 2011, after g.f. *)
terms = 26; (* B = g.f. of A000151 *) B[] = 0; Do[B[x] = x*Exp[2*Sum[ B[x^k]/k, {k, 1, terms}]] + O[x]^terms // Normal, terms];
A[x_] = Exp[Sum[B[x^k]/k, {k, 1, terms}]] + O[x]^terms;
CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
-
seq(N) = {my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(sqrt(Ser(A)))} \\ Andrew Howroyd, May 13 2018
A242249
Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 4, 26, 82, 188, 360, 614, 966, ...
0, 9, 107, 495, 1499, 3570, 7284, 13342, ...
0, 20, 458, 3144, 12628, 37476, 91566, 195384, ...
0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
Columns k=0-10 give:
A063524,
A000081,
A000151,
A006964,
A052763,
A052788,
A246235,
A246236,
A246237,
A246238,
A246239.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
-
\\ ColGf gives column generating function
ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018
A000238
Number of oriented trees with n nodes.
Original entry on oeis.org
1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, 492180, 2266502, 10598452, 50235931, 240872654, 1166732814, 5702001435, 28088787314, 139354922608, 695808554300, 3494390057212, 17641695461662, 89495023510876, 456009893224285, 2332997330210440
Offset: 1
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, r(x).
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 350 terms from N. J. A. Sloane)
- H. R. Afshar, E. A. Bergshoeff, W. Merbis, Interacting spin-2 fields in three dimensions, arXiv preprint arXiv:1410.6164 [hep-th], 2014-2015, JHEP 2015 (2015) # 040.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy), TOC
- R. J. Mathar, Oriented trees A000238
- R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
- Index entries for sequences related to trees
-
A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(2* add(A(n-1)(x^k)/k, k=1..n-1)), x=0,n), polynom), x) fi end: a:= n-> coeff(series(A(n+1)(x) *(1-A(n+1)(x)), x=0, n+1), x,n): seq(a(n), n=1..26); # Alois P. Heinz, Aug 20 2008
-
A[n_][y_] := A[n][y] = If[n == 0, 0, Normal[Series[x*Exp[2*Sum[A[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n}] /. x -> y]]; a[n_] := SeriesCoefficient[A[n+1][x]*(1-A[n+1][x]), {x, 0, n}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
-
seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(Ser(A)-x*Ser(A)^2)} \\ Andrew Howroyd, May 13 2018
A090381
Expansion of (1+4x+7x^2)/((1-x)^2*(1-x^2)).
Original entry on oeis.org
1, 6, 19, 36, 61, 90, 127, 168, 217, 270, 331, 396, 469, 546, 631, 720, 817, 918, 1027, 1140, 1261, 1386, 1519, 1656, 1801, 1950, 2107, 2268, 2437, 2610, 2791, 2976, 3169, 3366, 3571, 3780, 3997, 4218, 4447, 4680, 4921, 5166, 5419, 5676, 5941, 6210, 6487, 6768, 7057, 7350, 7651, 7956, 8269
Offset: 0
Some triples for n=10 (from _R. H. Hardin_, Aug 04 2014):
..3....1....2....1....7....9....5....8....5....6....9....4...10....8....6....2
..3....3....8....9....3....3....7....2....9....4....3...10....9....1....8....7
..7....7...10....5....2....1....3....7....1....3....7....0....1....9....4....8
- R. H. Hardin and N. J. A. Sloane, Table of n, a(n) for n = 0..1000 [First 210 terms from Hardin]
- N. Eriksson, Toric ideals of homogeneous phylogenetic models, arXiv:math/0401175 [math.CO], 2004.
- Nicolas Nagel, Example picture for angle (n+1)-sectors
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
[3*n*(n+1)+(1+(-1)^n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2016
-
f:=n-> if n mod 2 = 0 then t:=n/2; 12*t^2+6*t+1 else
t:=(n-1)/2; 12*t^2+18*t+6; fi;
[seq(f(n), n=0..100)];
-
CoefficientList[Series[(1 + 4 x + 7 x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 52}], x] (* Michael De Vlieger, May 07 2016 *)
Table[3 n (n + 1) + (1 + (-1)^n)/2, {n, 0, 52}] (* or *)
LinearRecurrence[{2, 0, -2, 1}, {1, 6, 19, 36}, 53] (* Michael De Vlieger, Sep 12 2016 *)
-
x='x+O('x^99); Vec((1+4*x+7*x^2)/((1-x)^2*(1-x^2))) \\ Altug Alkan, May 12 2016
A198760
Number of initial spin configurations in two-colored rooted trees with n nodes.
Original entry on oeis.org
2, 8, 32, 136, 596, 2712, 12642, 60234, 291840, 1434184, 7130640, 35807114, 181339236, 925139186, 4750176056, 24528421712, 127294780994, 663591911824, 3473315219722, 18246162722278, 96169600405626, 508413199626078, 2695245063006696, 14324688031734740
Offset: 2
- G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
- Alois P. Heinz, Table of n, a(n) for n = 2..500
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B, January 2012).
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012).
-
g:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(t*g(i-1$2, 2)+j-1, j)*g(n-i*j, i-1, t), j=0..n/i)))
end:
a:= n-> 2*(g(n-1$2, 2) -g(n-1$2, 1)):
seq(a(n), n=2..30); # Alois P. Heinz, May 12 2014
-
g[n_, i_, t_] := g[n, i, t] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[t*g[i-1, i-1, 2]+j-1, j]*g[n-i*j, i-1, t], {j, 0, n/i}]]]; a[n_] := 2*(g[n-1, n-1, 2] - g[n-1, n-1, 1]) // FullSimplify; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)
A005751
Number of matched trees with 2n nodes.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 180, 701, 2891, 12371, 54564, 246319, 1133602, 5300255, 25119554, 120441076, 583373822, 2851023191, 14044428996, 69677569603, 347904448580, 1747195558582, 8820848574074, 44747514381341, 228004950808983, 1166498678253839, 5990376960443432
Offset: 1
a(3)=2; indeed we have the path P_6 and the tree obtained by identifying one endpoint of each of P_2, P_3, and P_3. - _Emeric Deutsch_, Apr 13 2014
- S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Aviezri S. Fraenkel, Edward R. Scheinerman, and Daniel Ullman, Undirected Edge Geography, Theoretical Computer Science, 112, (1993), 371-381.
- Indranil Ghosh, Python program for computing this sequence (translated from Maple code)
- Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
- Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
- Index entries for sequences related to trees
Cf.
A000151 for the rooted version.
-
with(numtheory): r2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(r2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: p2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(p2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: m2:= n-> (r2(n) -add(r2(m) *r2(n-m), m=1..n-1) +`if`(irem(n, 2)=0, r2(n/2), p2((n+1)/2)))/2: seq(m2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
-
r2[n_] := r2[n] = If[n == 1, 1, 2/(n-1)*Sum[r2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; p2[n_] := p2[n] = If[n == 1, 1, 1/(n-1)*Sum[p2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; m2[n_] := (r2[n] - Sum[r2[m]*r2[n-m], {m, 1, n-1}] + If[Mod[n, 2] == 0, r2[n/2], p2[(n+1)/2]])/2; Table[m2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
Showing 1-8 of 8 results.
Comments