cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.

Original entry on oeis.org

1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002
Column k=2 of A242249.

Programs

  • Maple
    R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
    for n from 5 to M do
    series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
    t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
    R:=series(R+t4*x^n,x,n+1); od:
    for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
    with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
    (* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018

Formula

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.2078615974229174213216534920508516879353537904602582293754027908931077971... - Vaclav Kotesovec, Aug 20 2014, updated Dec 26 2020

Extensions

Extended with alternate description by Christian G. Bower, Apr 15 1998
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

A038055 Number of n-node rooted trees with nodes of 2 colors.

Original entry on oeis.org

2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000081, A038056-A038062, A271878 (multisets).
Cf. A245870.

Programs

  • Maple
    spec := [N, {N=Prod(bead,Set(N)), bead=Union(R,B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*
          a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 11 2014
  • Mathematica
    a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
    a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018

Formula

Shifts left and halves under Euler transform.
a(n) = 2*A000151(n).
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232949712892713516..., c = 0.41572319484583484264330698410170337587070758092051645875080558178621559423... . - Vaclav Kotesovec, Sep 11 2014, updated Dec 26 2020

A005750 Number of planted matched trees with n nodes.

Original entry on oeis.org

1, 1, 3, 10, 39, 160, 702, 3177, 14830, 70678, 342860, 1686486, 8393681, 42187148, 213828802, 1091711076, 5609297942, 28982708389, 150496728594, 784952565145, 4110491658233, 21602884608167, 113907912618599, 602414753753310, 3194684310627727, 16984594260224529
Offset: 1

Views

Author

Keywords

Comments

When convolved with itself gives A000151.
Number of rooted trees with n nodes and edges not attached to root are 2-colored or oriented.
Also number of 2-trees (with 2n+1 cells) rooted at a symmetric end-edge. - Vladeta Jovovic, Aug 22 2001

Examples

			A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 160*x^6 + 702*x^7 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.5.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(add((A(n-1)(x^k))^2/(k*x^k), k=1..2*n)), x=0,2*n), polynom), x) fi end: a:= n-> coeff(series(A(n)(x), x=0, n+1), x,n): seq(a(n), n=1..23); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    max = 23; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[ Log[f[x]/x] - Sum[f[x^k]^2/(k*x^k), {k, 1, max}], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; s[2] = Solve[eqns[[1]], c[2]][[1]]; Do[eqns = Rest[eqns] /. s[k-1]; s[k] = Solve[ eqns[[1]], c[k]][[1]], {k, 3, max}]; Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 2, max}]] (* Jean-François Alcover, Oct 25 2011, after g.f. *)
    terms = 26; (* B = g.f. of A000151 *) B[] = 0; Do[B[x] = x*Exp[2*Sum[ B[x^k]/k, {k, 1, terms}]] + O[x]^terms // Normal, terms];
    A[x_] = Exp[Sum[B[x^k]/k, {k, 1, terms}]] + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(sqrt(Ser(A)))} \\ Andrew Howroyd, May 13 2018

Formula

a(n+1) is Euler transform of A000151.
G.f.: A(x) = x*exp( A(x)^2/x + A(x^2)^2/(2x^2) + A(x^3)^2/(3x^3) + ... + A(x^n)^2/(n*x^n) + ...). [Harary & Palmer (3.5.8)] - Paul D. Hanna
G.f.: sqrt(B(x)/x) where B(x) is the g.f. of A000151. - Andrew Howroyd, May 13 2018
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232..., c = 0.06185402386554883780092844840921448929211072031752507960399709674242810089... - Vaclav Kotesovec, Sep 12 2014, updated Dec 26 2020
a(n) = A063687(n)+2*A058870(n). [Harary & Palmer (3.5.3)] - R. J. Mathar, Jan 13 2025

Extensions

More terms, formula and comment from Christian G. Bower, Dec 15 1999

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A000238 Number of oriented trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, 492180, 2266502, 10598452, 50235931, 240872654, 1166732814, 5702001435, 28088787314, 139354922608, 695808554300, 3494390057212, 17641695461662, 89495023510876, 456009893224285, 2332997330210440
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, r(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000060, A000151, A051437 (linear oriented), A334827 (oriented star-like).
Diagonal of A335362.

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(2* add(A(n-1)(x^k)/k, k=1..n-1)), x=0,n), polynom), x) fi end: a:= n-> coeff(series(A(n+1)(x) *(1-A(n+1)(x)), x=0, n+1), x,n): seq(a(n), n=1..26); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    A[n_][y_] := A[n][y] = If[n == 0, 0, Normal[Series[x*Exp[2*Sum[A[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n}] /. x -> y]]; a[n_] := SeriesCoefficient[A[n+1][x]*(1-A[n+1][x]), {x, 0, n}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(Ser(A)-x*Ser(A)^2)} \\ Andrew Howroyd, May 13 2018

Formula

G.f. = x+x^2+3*x^3+8*x^4+27*x^5+... = R(x)-R(x)^2, where R(x) = g.f. for A000151.
a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.22571615379282714232305... . - Vaclav Kotesovec, Dec 08 2014

Extensions

2 errors corrected by Paul Zimmermann, Mar 01 1996
More terms from N. J. A. Sloane, Mar 10 2007

A090381 Expansion of (1+4x+7x^2)/((1-x)^2*(1-x^2)).

Original entry on oeis.org

1, 6, 19, 36, 61, 90, 127, 168, 217, 270, 331, 396, 469, 546, 631, 720, 817, 918, 1027, 1140, 1261, 1386, 1519, 1656, 1801, 1950, 2107, 2268, 2437, 2610, 2791, 2976, 3169, 3366, 3571, 3780, 3997, 4218, 4447, 4680, 4921, 5166, 5419, 5676, 5941, 6210, 6487, 6768, 7057, 7350, 7651, 7956, 8269
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2004

Keywords

Comments

Also degree of toric ideal associated with path with n+2 nodes [Eriksson].
Also number of triples (t_1, t_2, t_3) with all t_i in the range 0 <= t_i <= n such that at least one t_i + t_j = n (with i != j). - R. H. Hardin, Aug 04 2014
Conjecture: a(n) is the maximum number of areas that are defined by the 3n angle (n+1)-sectors in a triangle. - Nicolas Nagel, Sep 09 2016

Examples

			Some triples for n=10 (from _R. H. Hardin_, Aug 04 2014):
..3....1....2....1....7....9....5....8....5....6....9....4...10....8....6....2
..3....3....8....9....3....3....7....2....9....4....3...10....9....1....8....7
..7....7...10....5....2....1....3....7....1....3....7....0....1....9....4....8
		

Crossrefs

Row 1 of A245869.
Central spine of triangle in A245556. Cf. also A245557.

Programs

  • Magma
    [3*n*(n+1)+(1+(-1)^n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2016
  • Maple
    f:=n-> if n mod 2 = 0 then t:=n/2; 12*t^2+6*t+1 else
    t:=(n-1)/2; 12*t^2+18*t+6; fi;
    [seq(f(n), n=0..100)];
  • Mathematica
    CoefficientList[Series[(1 + 4 x + 7 x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 52}], x] (* Michael De Vlieger, May 07 2016 *)
    Table[3 n (n + 1) + (1 + (-1)^n)/2, {n, 0, 52}] (* or *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 6, 19, 36}, 53] (* Michael De Vlieger, Sep 12 2016 *)
  • PARI
    x='x+O('x^99); Vec((1+4*x+7*x^2)/((1-x)^2*(1-x^2))) \\ Altug Alkan, May 12 2016
    

Formula

G.f.: (1+4x+7x^2)/((1-x)^2*(1-x^2)).
a(2t) = 12t^2+6t+1, a(2t+1) = 12t^2+18t+6 (t >= 0).
The defining g.f. implies the recurrence a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), an empirical discovery of R. H. Hardin.
a(n) = 3*n*(n+1)+(1+(-1)^n)/2. - Wesley Ivan Hurt, May 06 2016
E.g.f.: 3*x*(2 + x)*exp(x) + cosh(x). - Ilya Gutkovskiy, May 06 2016

Extensions

Edited by N. J. A. Sloane, Aug 04 2014 (merging the old A090381 and A245870).

A198760 Number of initial spin configurations in two-colored rooted trees with n nodes.

Original entry on oeis.org

2, 8, 32, 136, 596, 2712, 12642, 60234, 291840, 1434184, 7130640, 35807114, 181339236, 925139186, 4750176056, 24528421712, 127294780994, 663591911824, 3473315219722, 18246162722278, 96169600405626, 508413199626078, 2695245063006696, 14324688031734740
Offset: 2

Views

Author

N. J. A. Sloane, Oct 29 2011

Keywords

Comments

Also the number of two-colored rooted trees that have for a given color of the root at least one nearest neighbor node of the root in the other color. - Martin Paech, Apr 16 2012

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011

Crossrefs

Programs

  • Maple
    g:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(t*g(i-1$2, 2)+j-1, j)*g(n-i*j, i-1, t), j=0..n/i)))
        end:
    a:= n-> 2*(g(n-1$2, 2) -g(n-1$2, 1)):
    seq(a(n), n=2..30);  # Alois P. Heinz, May 12 2014
  • Mathematica
    g[n_, i_, t_] := g[n, i, t] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[t*g[i-1, i-1, 2]+j-1, j]*g[n-i*j, i-1, t], {j, 0, n/i}]]]; a[n_] := 2*(g[n-1, n-1, 2] - g[n-1, n-1, 1]) // FullSimplify; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.6465426162329497128927135162..., c = 0.29201514711473716704145008728... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Terms a(8) and a(9) added by Martin Paech, Apr 16 2012
Term a(10) added by Martin Paech, Jul 30 2013
a(11)-a(25) from Alois P. Heinz, May 12 2014

A005751 Number of matched trees with 2n nodes.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 180, 701, 2891, 12371, 54564, 246319, 1133602, 5300255, 25119554, 120441076, 583373822, 2851023191, 14044428996, 69677569603, 347904448580, 1747195558582, 8820848574074, 44747514381341, 228004950808983, 1166498678253839, 5990376960443432
Offset: 1

Views

Author

Keywords

Comments

This sequence also describes the number of trees on 2n vertices that are in P-position (a player 2 win) in unrooted UVG (Undirected Vertex Geography). This connection is discussed by Fraenkel, Scheinerman, and Ullman in their paper "Undirected Edge Geography." - Kaitlin Bruegge, Jul 14 2017

Examples

			a(3)=2; indeed we have the path P_6 and the tree obtained by identifying one endpoint of each of P_2, P_3, and P_3. - _Emeric Deutsch_, Apr 13 2014
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000151 for the rooted version.
Cf. A245870.

Programs

  • Maple
    with(numtheory): r2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(r2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: p2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(p2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: m2:= n-> (r2(n) -add(r2(m) *r2(n-m), m=1..n-1) +`if`(irem(n, 2)=0, r2(n/2), p2((n+1)/2)))/2: seq(m2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
  • Mathematica
    r2[n_] := r2[n] = If[n == 1, 1, 2/(n-1)*Sum[r2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; p2[n_] := p2[n] = If[n == 1, 1, 1/(n-1)*Sum[p2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; m2[n_] := (r2[n] - Sum[r2[m]*r2[n-m], {m, 1, n-1}] + If[Mod[n, 2] == 0, r2[n/2], p2[(n+1)/2]])/2; Table[m2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.646542616232949712892713..., c = 0.1128580768964135711615258... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Aug 04 2009
Showing 1-8 of 8 results.