cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.

Original entry on oeis.org

1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002
Column k=2 of A242249.

Programs

  • Maple
    R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
    for n from 5 to M do
    series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
    t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
    R:=series(R+t4*x^n,x,n+1); od:
    for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
    with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
    (* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018

Formula

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.2078615974229174213216534920508516879353537904602582293754027908931077971... - Vaclav Kotesovec, Aug 20 2014, updated Dec 26 2020

Extensions

Extended with alternate description by Christian G. Bower, Apr 15 1998
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

A005753 Number of rooted identity matched trees with n nodes.

Original entry on oeis.org

1, 2, 5, 18, 66, 266, 1111, 4792, 21124, 94888, 432415, 1994828, 9296712, 43706722, 207030398, 987130456, 4733961435, 22819241034, 110500644857, 537295738556, 2622248720234, 12840953621208, 63074566121245, 310693364823376, 1534374047239554, 7595642577152762
Offset: 1

Views

Author

Keywords

Comments

Also number of rooted identity trees with n nodes and 2-colored non-root nodes. - Christian G. Bower, Apr 15 1998

Examples

			G.f.: A(x) = x + 2*x^2 + 5*x^3 + 18*x^4 + 66*x^5 + 266*x^6 + ...
where A(x) = x*(1+x)^2*(1+x^2)^4*(1+x^3)^10*(1+x^4)^36*(1+x^5)^132*... (the exponents are A038077(n), n>=1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A255517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 1, b((n-1)$2)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n == 1, 1, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(x*prod(k=1, n-1, (1+x^k+x*O(x^n))^(2*a(k))), n)} /* Paul D. Hanna */

Formula

G.f.: x*Product_{n>=1} (1 + x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Dec 31 2011
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.192066288645200371237879149260484794708740197522264442948290580404909605849... - Vaclav Kotesovec, Aug 25 2014, updated Dec 26 2020
G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). - Ilya Gutkovskiy, Apr 13 2019

A005754 Number of planted identity matched trees with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 24, 95, 388, 1650, 7183, 31965, 144502, 662241, 3068942, 14358678, 67729973, 321759461, 1538076291, 7392775328, 35707198905, 173221206284, 843634142771, 4123376617009, 20218897206392, 99436453714990, 490355165178472, 2424146632435852
Offset: 1

Views

Author

Keywords

Comments

Number of rooted identity trees with n nodes and edges not attached to root are 2-colored or oriented. - Christian G. Bower, Dec 15 1999

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1]; Table[a[n], {n, 1, 30}] // FullSimplify (* Jean-François Alcover, Dec 02 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(n+1) is Weigh transform of A005753. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.05927840588836202377824646... . - Vaclav Kotesovec, Aug 25 2014
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x - A(x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) - A(x^4)^2/(4*x^4) + ... ). - Ilya Gutkovskiy, May 26 2023

Extensions

More terms from Christian G. Bower, Dec 15 1999

A245870 Decimal expansion of a constant related to A000151.

Original entry on oeis.org

5, 6, 4, 6, 5, 4, 2, 6, 1, 6, 2, 3, 2, 9, 4, 9, 7, 1, 2, 8, 9, 2, 7, 1, 3, 5, 1, 6, 2, 1, 6, 9, 1, 3, 8, 3, 8, 1, 4, 9, 8, 2, 1, 9, 1, 1, 6, 0, 5, 3, 8, 4, 3, 9, 2, 3, 8, 5, 8, 1, 7, 0, 2, 8, 8, 5, 0, 0, 2, 1, 4, 3, 1, 1, 2, 2, 4, 9, 4, 3, 0, 7, 7, 0, 7, 4, 2, 7, 5, 5, 5, 1, 6, 1, 1, 7, 7, 8, 8, 3, 4, 0, 6, 6, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			5.646542616232949712892713516216913838149821911605384392385817...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.

Crossrefs

Formula

Equals lim n -> infinity A000151(n)^(1/n).
Equals lim n -> infinity A005751(n)^(1/n).
Equals lim n -> infinity A038055(n)^(1/n).
Equals lim n -> infinity A005750(n)^(1/n).
Equals lim n -> infinity A198760(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 11 2014 and Dec 26 2020

A005751 Number of matched trees with 2n nodes.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 180, 701, 2891, 12371, 54564, 246319, 1133602, 5300255, 25119554, 120441076, 583373822, 2851023191, 14044428996, 69677569603, 347904448580, 1747195558582, 8820848574074, 44747514381341, 228004950808983, 1166498678253839, 5990376960443432
Offset: 1

Views

Author

Keywords

Comments

This sequence also describes the number of trees on 2n vertices that are in P-position (a player 2 win) in unrooted UVG (Undirected Vertex Geography). This connection is discussed by Fraenkel, Scheinerman, and Ullman in their paper "Undirected Edge Geography." - Kaitlin Bruegge, Jul 14 2017

Examples

			a(3)=2; indeed we have the path P_6 and the tree obtained by identifying one endpoint of each of P_2, P_3, and P_3. - _Emeric Deutsch_, Apr 13 2014
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000151 for the rooted version.
Cf. A245870.

Programs

  • Maple
    with(numtheory): r2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(r2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: p2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(p2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: m2:= n-> (r2(n) -add(r2(m) *r2(n-m), m=1..n-1) +`if`(irem(n, 2)=0, r2(n/2), p2((n+1)/2)))/2: seq(m2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
  • Mathematica
    r2[n_] := r2[n] = If[n == 1, 1, 2/(n-1)*Sum[r2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; p2[n_] := p2[n] = If[n == 1, 1, 1/(n-1)*Sum[p2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; m2[n_] := (r2[n] - Sum[r2[m]*r2[n-m], {m, 1, n-1}] + If[Mod[n, 2] == 0, r2[n/2], p2[(n+1)/2]])/2; Table[m2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.646542616232949712892713..., c = 0.1128580768964135711615258... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Aug 04 2009

A363387 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^2 / (k*x^k) ).

Original entry on oeis.org

1, 1, 1, 3, 6, 17, 42, 120, 330, 962, 2797, 8334, 24989, 75905, 232142, 715830, 2220473, 6928411, 21723883, 68424327, 216376757, 686742855, 2186771571, 6984248840, 22368127861, 71818903891, 231132440916, 745454242656, 2409080380316, 7799945417349
Offset: 1

Views

Author

Ilya Gutkovskiy, May 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^2/(k x^k), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; g[n_] := g[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 30}]
  • PARI
    seq(n)=my(p=x+x^2+O(x^3)); for(n=1, n\2, my(m=serprec(p,x)-1); p = x + x^2*exp(sum(k=1, m, subst(p + O(x^(m\k+1)), x, x^k)^2/(x^k*k)))); Vec(p + O(x*x^n)) \\ Andrew Howroyd, May 30 2023

A005755 Number of identity matched trees with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 64, 252, 1018, 4182, 17510, 74510, 322034, 1410362, 6251114, 27998532, 126583634, 577079333, 2650573354, 12256481666, 57021299394, 266754944481, 1254245360430, 5924659521632, 28105641930102, 133853504339029, 639801068848128
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): b2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(b2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: c2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(c2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: a2:= n-> (b2(n) -add(b2(m) *b2(n-m), m=1..n-1) -`if`(irem(n, 2)=0, b2(n/2), c2((n+1)/2)))/2: seq(a2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
  • Mathematica
    b2[n_] := b2[n] = If [n == 1, 1, 2/(n-1)*Sum[b2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; c2[n_] := c2[n] = If [n == 1, 1, 1/(n-1)*Sum[c2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; a2[n_] := (b2[n] - Sum[b2[m]*b2[n-m], {m, 1, n-1}] - If[Mod[n, 2] == 0, b2[n/2], c2[(n+1)/2]])/2; Table[a2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.089035519570392123219315... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Aug 04 2009

A340814 Array read by antidiagonals: T(n,k) is the number of unlabeled oriented edge-rooted k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 9, 1, 1, 5, 19, 39, 20, 1, 1, 6, 31, 107, 160, 48, 1, 1, 7, 46, 229, 647, 702, 115, 1, 1, 8, 64, 421, 1832, 4167, 3177, 286, 1, 1, 9, 85, 699, 4191, 15583, 27847, 14830, 719, 1, 1, 10, 109, 1079, 8325, 44322, 137791, 191747, 70678, 1842
Offset: 0

Views

Author

Andrew Howroyd, Feb 02 2021

Keywords

Comments

See section 2 of the Labelle reference.

Examples

			Array begins:
============================================================
n\k |   2     3      4       5       6        7        8
----+-------------------------------------------------------
  0 |   1     1      1       1       1        1        1 ...
  1 |   1     1      1       1       1        1        1 ...
  2 |   2     3      4       5       6        7        8 ...
  3 |   4    10     19      31      46       64       85 ...
  4 |   9    39    107     229     421      699     1079 ...
  5 |  20   160    647    1832    4191     8325    14960 ...
  6 |  48   702   4167   15583   44322   105284   220193 ...
  7 | 115  3177  27847  137791  487662  1385888  3374267 ...
  8 | 286 14830 191747 1255202 5527722 18795035 53275581 ...
  ...
		

Crossrefs

Columns k=2..6 are A000081(n+1), A005750(n+1), A052751, A052773, A052781.

Programs

  • PARI
    \\ here B(n,k) gives g.f. of k-th column.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
    { Mat(vector(7, k, Col(B(7, k+1)))) }

Formula

Column k is the Euler transform of column k+1 of A242249.
G.f. of column k: A(x) satisfies A(x) = exp(Sum_{i>0} x^i*A(x^i)^(k-1)/i).

A005752 a(n) = n^2 + n*floor(n*tau) - floor(n*tau)^2.

Original entry on oeis.org

0, 1, 1, 5, 4, 1, 9, 5, 16, 11, 4, 19, 11, 1, 20, 9, 31, 19, 5, 31, 16, 45, 29, 11, 44, 25, 4, 41, 19, 59, 36, 11, 55, 29, 1, 49, 20, 71, 41, 9, 64, 31, 89, 55, 19, 81, 44, 5, 71, 31, 100, 59, 16, 89, 45, 121, 76, 29, 109
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    Table[n^2 + n Floor[n #] - Floor[n #]^2 &@ GoldenRatio, {n, 0, 60}] (* Michael De Vlieger, Mar 06 2016 *)
  • PARI
    a(n) = my(fnt = floor(n*(sqrt(5)+1)/2));  n^2 + n*fnt - fnt^2; \\ Michel Marcus, Mar 05 2016

A007748 Number of self-converse oriented trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 10, 26, 39, 107, 160, 458, 702, 2058, 3177, 9498, 14830, 44947, 70678, 216598, 342860, 1059952, 1686486, 5251806, 8393681, 26297238, 42187148, 132856766, 213828802, 676398395, 1091711076
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000238.

Programs

  • Mathematica
    max = 15; A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] * A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; a[n_] := A[n, 2]; A000151 = Table[a[n], {n, 1, max}]; etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; A005750 = Table[etr[a][n], {n, 0, max}] ; A007748 = Riffle[A005750, A000151] (* Jean-François Alcover, Jul 16 2015 *)

Formula

a(2n)=A000151(n). a(2n-1)=A005750(n). - Christian G. Bower, Dec 15 1999
Showing 1-10 of 19 results. Next