cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363388 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^2 / (k*x^k) ).

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 28, 70, 190, 517, 1441, 4057, 11572, 33294, 96620, 282319, 830178, 2454384, 7292106, 21759413, 65185967, 195976025, 591097127, 1788122219, 5423917828, 16493458475, 50270190728, 153544874713, 469916030995, 1440807810639, 4425266768759, 13613578089594, 41943137192265
Offset: 1

Views

Author

Ilya Gutkovskiy, May 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 33; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[(-1)^(k + 1) A[x^k]^2/(k x^k), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; g[n_] := g[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[(-1)^(k/d + 1) d g[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 33}]
  • PARI
    seq(n)=my(p=x+x^2+O(x^3)); for(n=1, n\2, my(m=serprec(p,x)-1); p = x + x^2*exp(-sum(k=1, m, (-1)^k*subst(p + O(x^(m\k+1)), x, x^k)^2/(x^k*k)))); Vec(p + O(x*x^n)) \\ Andrew Howroyd, May 30 2023

A363465 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^3 / (k*x^(2*k)) ).

Original entry on oeis.org

1, 1, 1, 4, 10, 35, 113, 405, 1447, 5369, 20143, 76908, 296800, 1157784, 4554142, 18050308, 72003513, 288880549, 1164867528, 4718481975, 19190711729, 78338352168, 320851617424, 1318115448886, 5430133003281, 22427330328214, 92847100210382, 385217596191075, 1601483701650310
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^3/(k x^(2 k)), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; f[n_] := f[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; g[n_] := g[n] = Sum[a[k] f[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 2], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 29}]

A363466 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^4 / (k*x^(3*k)) ).

Original entry on oeis.org

1, 1, 1, 5, 15, 61, 240, 1019, 4387, 19462, 87649, 401077, 1856698, 8685295, 40978465, 194806667, 932141498, 4486014160, 21699575863, 105443142514, 514469464550, 2519437043753, 12379461876092, 61013509071216, 301553269618318, 1494229881209940, 7421627743464582, 36942997716584746
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^4/(k x^(3 k)), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; f[n_] := f[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; g[n_] := g[n] = Sum[f[k] f[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 3], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 28}]
Showing 1-3 of 3 results.