cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A174146 Partial sums of A000238.

Original entry on oeis.org

1, 2, 5, 13, 40, 131, 481, 1857, 7600, 32235, 141203, 633383, 2899885, 13498337, 63734268, 304606922, 1471339736, 7173341171, 35262128485, 174617051093, 870425605393, 4364815662605, 22006511124267, 111501534635143, 567511427859428, 2900508758069868
Offset: 1

Views

Author

Jonathan Vos Post, Mar 09 2010

Keywords

Comments

Partial sums of number of oriented trees with n nodes. The subsequence of primes in this partial sum begins: 2, 5, 13, 131, 633383, 870425605393, 55532683410408578237, 290078510058531496879, 26098901136734259174974296003.

Examples

			a(32) = 1 + 1 + 3 + 8 + 27 + 91 + 350 + 1376 + 5743 + 24635 + 108968 + 492180 + 2266502 + 10598452 + 50235931 + 240872654 + 1166732814 + 5702001435 + 28088787314 + 139354922608 + 695808554300 + 3494390057212 + 17641695461662 + 89495023510876 + 456009893224285 + 2332997330210440 + 11980753878699716 + 61739654323377296 + 319188605907760846 + 1655151350788152551 + 8606939469625111036 + 44874783067127406924.
		

Crossrefs

Cf. A000238.

Formula

a(n) = Sum_{i=1..n} A000238(i).

A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.

Original entry on oeis.org

1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002
Column k=2 of A242249.

Programs

  • Maple
    R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
    for n from 5 to M do
    series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
    t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
    R:=series(R+t4*x^n,x,n+1); od:
    for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
    with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
    (* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018

Formula

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.2078615974229174213216534920508516879353537904602582293754027908931077971... - Vaclav Kotesovec, Aug 20 2014, updated Dec 26 2020

Extensions

Extended with alternate description by Christian G. Bower, Apr 15 1998
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).

Original entry on oeis.org

1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2

Views

Author

Vladeta Jovovic, Apr 21 2000

Keywords

Examples

			1,1;
0,3,4,4,1,1;
0,0,8,22,37,47,38,27,13,5,1,1;
the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled).
Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)}
    { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

A350449 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n unlabeled nodes with k arcs, n >= 1, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 8, 9, 6, 1, 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1, 0, 0, 0, 0, 0, 91, 320, 732, 1136, 1281, 1056, 649, 281, 85, 15, 1, 0, 0, 0, 0, 0, 0, 350, 1788, 6012, 14378, 26529, 38407, 44621, 41638, 31321, 18843, 8983, 3325, 920, 180, 21, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 1;
  [4] 0, 0, 0, 8,  9,  6,  1;
  [5] 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1;
  ...
		

Crossrefs

Row sums are A101228.
Columns sums are A350451.
Leading diagonal is A000238.
Cf. A350447 (not necessarily connected), A350450 (transpose).

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A245870 Decimal expansion of a constant related to A000151.

Original entry on oeis.org

5, 6, 4, 6, 5, 4, 2, 6, 1, 6, 2, 3, 2, 9, 4, 9, 7, 1, 2, 8, 9, 2, 7, 1, 3, 5, 1, 6, 2, 1, 6, 9, 1, 3, 8, 3, 8, 1, 4, 9, 8, 2, 1, 9, 1, 1, 6, 0, 5, 3, 8, 4, 3, 9, 2, 3, 8, 5, 8, 1, 7, 0, 2, 8, 8, 5, 0, 0, 2, 1, 4, 3, 1, 1, 2, 2, 4, 9, 4, 3, 0, 7, 7, 0, 7, 4, 2, 7, 5, 5, 5, 1, 6, 1, 1, 7, 7, 8, 8, 3, 4, 0, 6, 6, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			5.646542616232949712892713516216913838149821911605384392385817...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.

Crossrefs

Formula

Equals lim n -> infinity A000151(n)^(1/n).
Equals lim n -> infinity A005751(n)^(1/n).
Equals lim n -> infinity A038055(n)^(1/n).
Equals lim n -> infinity A005750(n)^(1/n).
Equals lim n -> infinity A198760(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 11 2014 and Dec 26 2020

A350450 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected acyclic digraphs with n arcs and k vertices, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 1, 8, 0, 0, 0, 9, 27, 0, 0, 0, 6, 54, 91, 0, 0, 0, 1, 79, 320, 350, 0, 0, 0, 0, 63, 732, 1788, 1376, 0, 0, 0, 0, 33, 1136, 6012, 9933, 5743, 0, 0, 0, 0, 10, 1281, 14378, 45225, 54502, 24635, 0, 0, 0, 0, 1, 1056, 26529, 151848, 322736, 298250, 108968
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 1, 8;
  0, 0, 0, 9, 27;
  0, 0, 0, 6, 54,   91;
  0, 0, 0, 1, 79,  320,  350;
  0, 0, 0, 0, 63,  732, 1788, 1376;
  0, 0, 0, 0, 33, 1136, 6012, 9933, 5743;
  ...
		

Crossrefs

Main diagonal is A000238.
Row sums are A350451.
Column sums are A101228.
Cf. A122078, A350449 (transpose).

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsTr(10)); for(n=1, #T, print(T[n])); }

A335362 Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743, 106, 1235, 7734, 30270, 81170, 152509, 200413, 177266, 96035, 24635
Offset: 1

Views

Author

R. J. Mathar, Jun 03 2020

Keywords

Examples

			The triangle starts
1;
1, 1;
1, 2, 3;
2, 5,10, 8;
3,12,32,40,27;
There are T(3,1)=2 mixed trees on 3 nodes with one directed edge (the edge can point towards the middle node or away from it).
		

Crossrefs

Cf. A000055 (column d=0), A000238 (diagonal d=n-1), A000106 (column d=1), A006965 (row sums), A335601 (subdiagonal d=n-2).

Programs

  • PARI
    \\ Here R(n) is rooted mixed trees as g.f.
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}
    T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 23 2023

Extensions

Completed row n=9. - R. J. Mathar, Jun 11 2020
Terms a(46) and beyond from Andrew Howroyd, Mar 23 2023

A350734 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 2, 0, 0, 0, 8, 12, 10, 4, 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12, 0, 0, 0, 0, 0, 91, 395, 1144, 2393, 3767, 4500, 4112, 2740, 1274, 376, 56, 0, 0, 0, 0, 0, 0, 350, 2170, 9139, 28606, 71583, 145600, 244589, 339090, 387458, 361394, 271177, 159872, 71320, 22690, 4604, 456
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 2;
  [4] 0, 0, 0, 8, 12, 10,   4;
  [5] 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12;
  ...
		

Crossrefs

Row sums are A086345.
Column sums are A350915.
Leading diagonal is A000238.
The labeled version is A350732.
Cf. A054733, A350733, A350750, A350914 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n))}
    { for(n=1, 6, print(row(n))) }

A139621 Triangle read by rows: T(n,k) is the number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 15, 8, 1, 16, 57, 66, 27, 1, 25, 163, 353, 295, 91, 1, 40, 419, 1504, 2203, 1407, 350, 1, 56, 932, 5302, 12382, 13372, 6790, 1376, 1, 80, 1940, 16549, 58237, 96456, 80736, 33628, 5743, 1, 105, 3743, 46566, 237904, 573963, 717114, 482730, 168645, 24635
Offset: 0

Views

Author

Benoit Jubin, May 01 2008

Keywords

Comments

Length of the n-th row: n+1.

Examples

			Triangle begins:
     1
     1     1
     1     4     3
     1     8    15     8
     1    16    57    66    27
     1    25   163   353   295    91
     1    40   419  1504  2203  1407   350
     1    56   932  5302 12382 13372  6790  1376
T(2 arcs, 2 vertices) = 4: one graph 1->1, 2->1; one graph with 1->1, 1->2; one graph with 2->1, 2->1, one graph with 1->2, 2->1.
T(2 arcs, 3 vertices) = 3: one graph 2->1, 3->1; one graph 2->1, 3->2; one graph 2->1, 2->3.
		

Crossrefs

Cf. A129620, A136564, A139622, A137975 (row sums), A000238 (diagonal).

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
    {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,1) = 1.
T(n,2) = A136564(n,2) - floor(n/2).

Extensions

Prepended a(0)=1 to have a regular triangle, Joerg Arndt, Apr 14 2013
More terms from R. J. Mathar, Jul 31 2017
Terms a(34) and beyond from Andrew Howroyd, Oct 22 2019

A350789 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected digraphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 4, 8, 0, 0, 4, 22, 27, 0, 0, 1, 37, 108, 91, 0, 0, 1, 47, 326, 582, 350, 0, 0, 0, 38, 667, 2432, 3024, 1376, 0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743, 0, 0, 0, 13, 1477, 19646, 74676, 117312, 84494, 24635
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 3;
  0, 0, 4,  8;
  0, 0, 4, 22,   27;
  0, 0, 1, 37,  108,   91;
  0, 0, 1, 47,  326,  582,   350;
  0, 0, 0, 38,  667, 2432,  3024,  1376;
  0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743;
  ...
		

Crossrefs

Row sums are A053454.
Column sums are A003085.
Main diagonal is A000238.
Cf. A054733 (transpose), A350450 (acyclic), A350753 (strongly connected).

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }
Showing 1-10 of 16 results. Next