cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294783 Number of trees with n bicolored nodes and f nodes of the first color. Triangle T(n,f) read by rows, 0<=f<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 6, 4, 2, 3, 9, 15, 15, 9, 3, 6, 20, 43, 51, 43, 20, 6, 11, 48, 116, 175, 175, 116, 48, 11, 23, 115, 329, 573, 698, 573, 329, 115, 23, 47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47, 106, 719, 2609, 5978, 9656, 11241, 9656, 5978, 2609, 719, 106, 235, 1842
Offset: 0

Views

Author

R. J. Mathar, Apr 16 2018

Keywords

Examples

			The triangle starts
    1;
    1,   1;
    1,   1,   1;
    1,   2,   2,    1;
    2,   4,   6,    4,    2;
    3,   9,  15,   15,    9,    3;
    6,  20,  43,   51,   43,   20,    6;
   11,  48, 116,  175,  175,  116,   48,  11;
   23, 115, 329,  573,  698,  573,  329, 115,  23;
   47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47;
  106, 719,2609, 5978, 9656,11241, 9656,5978,2609,719,106;
  235,1842,
		

Crossrefs

Cf. A038056 (row sums), A000055 (diagonal and 1st column), A000081 (subdiagonal and 2nd column), A303833 (3rd column), A303843 (4th column), A304311 (connected graphs), A304489 (rooted).

Programs

  • PARI
    R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p,y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p,j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v;}
    M(n)={my(B=(1+y)*x*Ser(R(n,y))); 1 + B - (B^2 - substvec(B, [x,y], [x^2,y^2]))/2}
    { my(A=M(10)); for(n=0, #A-1, print(Vecrev(polcoeff(A, n)))) } \\ Andrew Howroyd, May 12 2018

Formula

T(n,f) = T(n,n-f), flipping all node colors.

Extensions

Row 10 completed. - R. J. Mathar, Apr 29 2018

A303829 Birooted graphs: number of unlabeled graphs with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 2, 6, 28, 148, 1144, 13128, 250240, 8295664, 494367376, 53628829952, 10655018252544, 3893626388008448, 2627758027841688960, 3289042848785452985600, 7666804477507744021487616, 33416397343695235205887366144, 273365202164844511328577434284160
Offset: 1

Views

Author

Brendan McKay, May 01 2018

Keywords

Crossrefs

Cf. A303831 (connected), A303833 (trees), A126122.

Formula

a(n) = 2 * A126122(n). - Alois P. Heinz, May 01 2018

A339303 Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 9, 6, 6, 2, 1, 20, 16, 15, 8, 3, 1, 48, 37, 41, 22, 12, 3, 1, 115, 96, 106, 69, 38, 15, 4, 1, 286, 239, 284, 194, 124, 52, 20, 4, 1, 719, 622, 750, 564, 377, 189, 77, 24, 5, 1, 1842, 1607, 2010, 1584, 1144, 618, 292, 100, 30, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 04 2020

Keywords

Comments

Linear forests (A339067) are considered up to reversal of the linear order.
T(n,k) is the number of unlabeled trees on n nodes rooted at two indistinguishable nodes at distance k-1 from each other.

Examples

			Triangle read by rows:
    1;
    1,   1;
    2,   1,   1;
    4,   3,   2,   1;
    9,   6,   6,   2,   1;
   20,  16,  15,   8,   3,   1;
   48,  37,  41,  22,  12,   3,  1;
  115,  96, 106,  69,  38,  15,  4,  1;
  286, 239, 284, 194, 124,  52, 20,  4, 1;
  719, 622, 750, 564, 377, 189, 77, 24, 5, 1;
  ...
		

Crossrefs

Columns 1..4 are A000081, A027852, A280788(n-3), A339302.
Row sums are A303840(n+2).
Row sums excluding the first column are A303833.
Cf. A339067.

Programs

  • PARI
    \\ TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f of column k: (r(x)^k + r(x)^(k mod 2)*r(x^2)^floor(k/2))/2 where r(x) is the g.f. of A000081.

A303840 Unlabeled trees with n nodes rooted at 2 indistinguishable roots that are leaves.

Original entry on oeis.org

0, 1, 1, 2, 4, 10, 24, 63, 164, 444, 1204, 3328, 9233, 25865, 72734, 205656, 583320, 1660318, 4737540, 13551165, 38837535, 111512229, 320681604, 923528963, 2663057582, 7688068638, 22218350303, 64272720521, 186091334380, 539237928902, 1563731491958, 4537823968645, 13176960639940, 38286514506439, 111306880581963
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Examples

			a(2)=a(3)=1, because the two roots must be (all) the leaves. a(4)=2 (one pattern from the linear tree, one from the star tree). a(6)=10: 1 pattern from n-Hexane. 2 patterns from 2-Methyl-Pentane. 2 patterns from (2,3)-Bimethyl-Butane. 1 pattern from the star graph. 2 patterns from 3-Methyl-Pentane. 2 patterns from (2,2)-Bimethyl-Butane.
		

Crossrefs

Cf. A303833 (roots need not be leaves), A055290 (cardinality of candidates).

Programs

  • Maple
    a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228,
    35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597,
    997171512998, 2809934352700, 7929819784355, 22409533673568, 63411730258053, 179655930440464, 509588049810620, 1447023384581029,
    4113254119923150, 11703780079612453, 33333125878283632] ;
    g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
    g81fin := x ;
    g := 0 ;
    nmax := nops(a000081) ;
    for m from 0 to nmax do
        mhalf := floor(m/2) ;
        ghalf := g81^mhalf*g81fin ;
        gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
        if type(m,odd) then
            gcyc := gcyc*g81 ;
        end if;
        g := g+gcyc ;
    end do:
    taylor(g,x=0,nmax) ;
    gfun[seriestolist](%) ;

A303842 Triangle read by rows: T(s,n) (s>=1 and 2<=n<=s+1) = number of trees with n nodes and positive integer edge labels with label sum s.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 6, 1, 3, 9, 15, 16, 11, 1, 3, 13, 26, 43, 37, 23, 1, 4, 17, 46, 88, 116, 96, 47, 1, 4, 23, 68, 169, 273, 329, 239, 106, 1, 5, 28, 103, 287, 585, 869, 918, 622, 235, 1, 5, 35, 141, 467, 1104, 2031, 2695, 2609, 1607, 551
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Examples

			The triangle starts
1;
1   1;
1   1   2;
1   2   3    3;
1   2   6    6    6;
1   3   9    15   16    11;
1   3   13   26   43    37     23;
1   4   17   46   88    116    96    47;
1   4   23   68   169   273    329   239  106;
1   5   28   103  287   585    869   918  622    235;
1   5   35   141  467   1104   2031  2695 2609   1607   551;
1   6   42   195  711   1972   4211  6882 8399   ...    4235  1301;
1   6   50   253  1051  3270   8108 15513 23152  ...    ... ;
1   7   58   330  1489  5222  14552 32191 56291  ...    ... ;
1   7   68   412  2063  7958  24846 62014 124958  ...    ... ;
		

Crossrefs

Cf. A303841 (labeled nodes), A000055 (diagonal), A027852 (subdiagonal), A303833 (subdiagonal), A304914 (row sums).

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    b(n)={my(v=[1]); for(i=1, n, v=concat([1], v + EulerMT(y*v))); Ser(v)*y*(1-x)}
    seq(n)={my(g=b(n)); Vec(g + (substvec(g, [x,y], [x^2,y^2]) - g^2)*x/(2*(1-x)) - y)}
    {my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y^2)))} \\ Andrew Howroyd, May 20 2018

A303843 The number of unlabeled trees with n nodes rooted at 3 indistinguishable roots.

Original entry on oeis.org

0, 0, 1, 4, 15, 51, 175, 573, 1866, 5978, 19000, 59859, 187503, 584012, 1811212, 5595239, 17228943, 52898764, 162013452, 495100454, 1510029296, 4597430832, 13975327501, 42422033217, 128606150706, 389423872694, 1177925775148, 3559477190797, 10746362772325
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Comments

A unique path exists between any two of the roots. These will intersect at a single vertex which might coincide with one of the original roots. This intersecting vertex can be chosen as a root to which the other trees are attached. - Andrew Howroyd, May 03 2018

Examples

			a(3)=1 (all nodes are roots). a(4)=4: the linear tree has the non-root node either at a leaf or not, and the star tree has the non-root node either at the center or at a leaf.
		

Crossrefs

4th column of A294783.
Cf. A000081 (1-rooted), A303833 (2-rooted).

Programs

  • Mathematica
    m = 30; T[_] = 0;
    Do[T[x_] = x Exp[Sum[T[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}];
    g[x_] = T[x]/(1 - T[x]) + O[x]^m // Normal;
    g[x]((g[x]^3 + 3g[x]g[x^2] + 2g[x^3] + 3g[x]^2 + 3g[x^2])/(6(1 + g[x]))) + O[x]^m // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 16 2020, after Andrew Howroyd *)
  • PARI
    \\ here TreeGf is gf of A000081
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n) = {my(T=TreeGf(n)); my(g=T/(1-T)); T*(g^3 + 3*subst(g,x,x^2)*g + 2*subst(g,x,x^3) + 3*g^2 + 3*subst(g,x,x^2))/6}
    concat([0,0], Vec(seq(30))) \\ Andrew Howroyd, May 03 2018

Formula

G.f.: g(x)*(g(x)^3 + 3*g(x)*g(x^2) + 2*g(x^3) + 3*g(x)^2 + 3*g(x^2))/(6*(1 + g(x))) where g(x) = T(x)/(1-T(x)) and T(x) is the g.f. of A000081. - Andrew Howroyd, May 03 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 03 2018

A304067 Number of trees with n vertices rooted at a non-edge.

Original entry on oeis.org

0, 0, 1, 3, 9, 27, 79, 233, 679, 1987, 5784, 16864, 49063, 142821, 415439, 1208761, 3516475, 10232428, 29778138, 86682119, 252382445, 735040515, 2141319946, 6239913801, 18188637903, 53033228465, 154674931182, 451247206423
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=1: the non-edge joins two leaves. a(4)=3: The non-edge joins two leaves of the star graph; or the non-edge joins the two leaves of the linear graph; or the non-edge joins a leaf with the node at distance 2.
		

Crossrefs

Cf. A000055 (not rooted), A027852 (rooted at an edge), A304068 (rooted at an oriented non-edge).

Formula

a(n) + A027852(n) = A303833(n).
Showing 1-7 of 7 results.