A294783
Number of trees with n bicolored nodes and f nodes of the first color. Triangle T(n,f) read by rows, 0<=f<=n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 6, 4, 2, 3, 9, 15, 15, 9, 3, 6, 20, 43, 51, 43, 20, 6, 11, 48, 116, 175, 175, 116, 48, 11, 23, 115, 329, 573, 698, 573, 329, 115, 23, 47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47, 106, 719, 2609, 5978, 9656, 11241, 9656, 5978, 2609, 719, 106, 235, 1842
Offset: 0
The triangle starts
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
2, 4, 6, 4, 2;
3, 9, 15, 15, 9, 3;
6, 20, 43, 51, 43, 20, 6;
11, 48, 116, 175, 175, 116, 48, 11;
23, 115, 329, 573, 698, 573, 329, 115, 23;
47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47;
106, 719,2609, 5978, 9656,11241, 9656,5978,2609,719,106;
235,1842,
-
R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p,y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p,j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v;}
M(n)={my(B=(1+y)*x*Ser(R(n,y))); 1 + B - (B^2 - substvec(B, [x,y], [x^2,y^2]))/2}
{ my(A=M(10)); for(n=0, #A-1, print(Vecrev(polcoeff(A, n)))) } \\ Andrew Howroyd, May 12 2018
A303829
Birooted graphs: number of unlabeled graphs with n nodes rooted at 2 indistinguishable roots.
Original entry on oeis.org
0, 2, 6, 28, 148, 1144, 13128, 250240, 8295664, 494367376, 53628829952, 10655018252544, 3893626388008448, 2627758027841688960, 3289042848785452985600, 7666804477507744021487616, 33416397343695235205887366144, 273365202164844511328577434284160
Offset: 1
A339303
Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 9, 6, 6, 2, 1, 20, 16, 15, 8, 3, 1, 48, 37, 41, 22, 12, 3, 1, 115, 96, 106, 69, 38, 15, 4, 1, 286, 239, 284, 194, 124, 52, 20, 4, 1, 719, 622, 750, 564, 377, 189, 77, 24, 5, 1, 1842, 1607, 2010, 1584, 1144, 618, 292, 100, 30, 5, 1
Offset: 1
Triangle read by rows:
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
9, 6, 6, 2, 1;
20, 16, 15, 8, 3, 1;
48, 37, 41, 22, 12, 3, 1;
115, 96, 106, 69, 38, 15, 4, 1;
286, 239, 284, 194, 124, 52, 20, 4, 1;
719, 622, 750, 564, 377, 189, 77, 24, 5, 1;
...
Row sums excluding the first column are
A303833.
-
\\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2}
M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
A303840
Unlabeled trees with n nodes rooted at 2 indistinguishable roots that are leaves.
Original entry on oeis.org
0, 1, 1, 2, 4, 10, 24, 63, 164, 444, 1204, 3328, 9233, 25865, 72734, 205656, 583320, 1660318, 4737540, 13551165, 38837535, 111512229, 320681604, 923528963, 2663057582, 7688068638, 22218350303, 64272720521, 186091334380, 539237928902, 1563731491958, 4537823968645, 13176960639940, 38286514506439, 111306880581963
Offset: 1
a(2)=a(3)=1, because the two roots must be (all) the leaves. a(4)=2 (one pattern from the linear tree, one from the star tree). a(6)=10: 1 pattern from n-Hexane. 2 patterns from 2-Methyl-Pentane. 2 patterns from (2,3)-Bimethyl-Butane. 1 pattern from the star graph. 2 patterns from 3-Methyl-Pentane. 2 patterns from (2,2)-Bimethyl-Butane.
Cf.
A303833 (roots need not be leaves),
A055290 (cardinality of candidates).
-
a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228,
35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597,
997171512998, 2809934352700, 7929819784355, 22409533673568, 63411730258053, 179655930440464, 509588049810620, 1447023384581029,
4113254119923150, 11703780079612453, 33333125878283632] ;
g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
g81fin := x ;
g := 0 ;
nmax := nops(a000081) ;
for m from 0 to nmax do
mhalf := floor(m/2) ;
ghalf := g81^mhalf*g81fin ;
gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
if type(m,odd) then
gcyc := gcyc*g81 ;
end if;
g := g+gcyc ;
end do:
taylor(g,x=0,nmax) ;
gfun[seriestolist](%) ;
A303842
Triangle read by rows: T(s,n) (s>=1 and 2<=n<=s+1) = number of trees with n nodes and positive integer edge labels with label sum s.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 6, 1, 3, 9, 15, 16, 11, 1, 3, 13, 26, 43, 37, 23, 1, 4, 17, 46, 88, 116, 96, 47, 1, 4, 23, 68, 169, 273, 329, 239, 106, 1, 5, 28, 103, 287, 585, 869, 918, 622, 235, 1, 5, 35, 141, 467, 1104, 2031, 2695, 2609, 1607, 551
Offset: 1
The triangle starts
1;
1 1;
1 1 2;
1 2 3 3;
1 2 6 6 6;
1 3 9 15 16 11;
1 3 13 26 43 37 23;
1 4 17 46 88 116 96 47;
1 4 23 68 169 273 329 239 106;
1 5 28 103 287 585 869 918 622 235;
1 5 35 141 467 1104 2031 2695 2609 1607 551;
1 6 42 195 711 1972 4211 6882 8399 ... 4235 1301;
1 6 50 253 1051 3270 8108 15513 23152 ... ... ;
1 7 58 330 1489 5222 14552 32191 56291 ... ... ;
1 7 68 412 2063 7958 24846 62014 124958 ... ... ;
-
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
b(n)={my(v=[1]); for(i=1, n, v=concat([1], v + EulerMT(y*v))); Ser(v)*y*(1-x)}
seq(n)={my(g=b(n)); Vec(g + (substvec(g, [x,y], [x^2,y^2]) - g^2)*x/(2*(1-x)) - y)}
{my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y^2)))} \\ Andrew Howroyd, May 20 2018
A303843
The number of unlabeled trees with n nodes rooted at 3 indistinguishable roots.
Original entry on oeis.org
0, 0, 1, 4, 15, 51, 175, 573, 1866, 5978, 19000, 59859, 187503, 584012, 1811212, 5595239, 17228943, 52898764, 162013452, 495100454, 1510029296, 4597430832, 13975327501, 42422033217, 128606150706, 389423872694, 1177925775148, 3559477190797, 10746362772325
Offset: 1
a(3)=1 (all nodes are roots). a(4)=4: the linear tree has the non-root node either at a leaf or not, and the star tree has the non-root node either at the center or at a leaf.
-
m = 30; T[_] = 0;
Do[T[x_] = x Exp[Sum[T[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}];
g[x_] = T[x]/(1 - T[x]) + O[x]^m // Normal;
g[x]((g[x]^3 + 3g[x]g[x^2] + 2g[x^3] + 3g[x]^2 + 3g[x^2])/(6(1 + g[x]))) + O[x]^m // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 16 2020, after Andrew Howroyd *)
-
\\ here TreeGf is gf of A000081
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n) = {my(T=TreeGf(n)); my(g=T/(1-T)); T*(g^3 + 3*subst(g,x,x^2)*g + 2*subst(g,x,x^3) + 3*g^2 + 3*subst(g,x,x^2))/6}
concat([0,0], Vec(seq(30))) \\ Andrew Howroyd, May 03 2018
A304067
Number of trees with n vertices rooted at a non-edge.
Original entry on oeis.org
0, 0, 1, 3, 9, 27, 79, 233, 679, 1987, 5784, 16864, 49063, 142821, 415439, 1208761, 3516475, 10232428, 29778138, 86682119, 252382445, 735040515, 2141319946, 6239913801, 18188637903, 53033228465, 154674931182, 451247206423
Offset: 1
a(3)=1: the non-edge joins two leaves. a(4)=3: The non-edge joins two leaves of the star graph; or the non-edge joins the two leaves of the linear graph; or the non-edge joins a leaf with the node at distance 2.
Showing 1-7 of 7 results.
Comments