cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303831 Birooted graphs: number of unlabeled connected graphs with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 1, 3, 16, 98, 879, 11260, 230505, 7949596, 483572280, 53011686200, 10589943940654, 3880959679322754, 2623201177625659987, 3286005731275218388682, 7663042204550840483139108, 33407704152242477510352455230, 273327599183687887638526170380380
Offset: 1

Views

Author

Brendan McKay, May 01 2018

Keywords

Crossrefs

Cf. A303829 (not necessarily connected). 3rd column of A304311.
Cf. A000088 (not rooted), A126100 (connected single root), A053506 (2 roots adjacent).

Programs

  • Mathematica
    (* See the links section. *)

Formula

G.f.: B(x)/G(x) - (C(x^2) + C(x)^2)/2 where B(x) is the g.f. of A303829, G(x) is the g.f. of A000088 and C(x) is the g.f. of A126100. - Andrew Howroyd, May 03 2018
a(n) = A303830(n) + A304071(n). - Brendan McKay, May 05 2018

Extensions

a(12)-a(18) from Andrew Howroyd, May 03 2018

A126122 Number of edge-rooted unlabeled graphs on n nodes.

Original entry on oeis.org

0, 1, 3, 14, 74, 572, 6564, 125120, 4147832, 247183688, 26814414976, 5327509126272, 1946813194004224, 1313879013920844480, 1644521424392726492800, 3833402238753872010743808, 16708198671847617602943683072, 136682601082422255664288717142080
Offset: 1

Views

Author

Vladeta Jovovic, Mar 07 2007

Keywords

Comments

In other words, number of unlabeled graphs on n nodes with a marked edge.

Examples

			a(2)=1: the tree with 2 nodes and a rooted edge. a(3)=3: (i) the linear tree with one of the two edges rooted, (ii) the triangle graph with one of the three edges rooted, (iii) the disconnected graph with a single disconnected node and a tree with 2 nodes and a marked edge. - _R. J. Mathar_, May 01 2018
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Row sums of A126123.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length@v, i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := (Sum[GCD[v[[i]], v[[j]]], {i, 2, Length@v}, {j, 1, i - 1}] + Total[Quotient[v, 2]]);
    cross[u_, v_] := Sum[GCD[u[[i]], v[[j]]], {i, 1, Length@u}, {j, 1, Length@v}];
    a[n_] := If[n < 2, 0, s = 0; Do[s += permcount[p]*(2^(edges[p])*(2^cross[{1, 1}, p] + 2^cross[{2}, p])), {p, IntegerPartitions[n - 2]}]; s/(2(n - 2)!)];
    Array[a, 20] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u,v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i],v[j])))}
    a(n) = {if(n<2, 0, my(s=0); forpart(p=n-2, s+=permcount(p)*(2^(edges(p))*(2^cross([1,1],p) + 2^cross([2],p)))); s/(2*(n-2)!))} \\ Andrew Howroyd, May 03 2018

A339064 Number of unlabeled simple graphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 3, 9, 28, 87, 276, 909, 3086, 10879, 39821, 151363, 597062, 2442044, 10342904, 45301072, 204895366, 955661003, 4590214994, 22675644514, 115068710553, 599149303234, 3197694533771, 17475917252052, 97712883807625, 558481251055893, 3260409769087068
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 3 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/2)}

A361404 Triangle read by rows: T(n,k) is the number of graphs with loops on n unlabeled vertices with k loops.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 6, 6, 4, 11, 20, 28, 20, 11, 34, 90, 148, 148, 90, 34, 156, 544, 1144, 1408, 1144, 544, 156, 1044, 5096, 13128, 20364, 20364, 13128, 5096, 1044, 12346, 79264, 250240, 472128, 580656, 472128, 250240, 79264, 12346
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Comments

T(n,k) is the number of bicolored graphs on n nodes with k vertices having the first color. Adjacent vertices may have the same color.

Examples

			Triangle begins:
     1;
     1,    1;
     2,    2,     2;
     4,    6,     6,     4;
    11,   20,    28,    20,    11;
    34,   90,   148,   148,    90,    34;
   156,  544,  1144,  1408,  1144,   544,  156;
  1044, 5096, 13128, 20364, 20364, 13128, 5096, 1044;
  ...
		

Crossrefs

Columns k=0..2 are A000088, A000666(n-1), A303829.
Row sums are A000666.
Central coefficients are A361405.
Cf. A361361 (cubic).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1, #p, 1 + x^p[i])); Vecrev(s/n!)}

Formula

T(n,k) = T(n, n-k).

A340029 Number of unlabeled 2-connected graphs with n vertices rooted at a pair of indistinguishable vertices.

Original entry on oeis.org

0, 1, 1, 6, 37, 388, 6004, 148759, 5974184, 404509191, 47552739892, 9923861406343, 3735194287263442, 2565376853616300801, 3244070698095148283628, 7607050619214875184974489, 33269229977451262849539412860, 272689940536978851416633440863567
Offset: 1

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    blockGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    cycleIndexSeries(n)={sCartProd(blockGraphs(n), x^2 * symGroupCycleIndex(2) * symGroupSeries(n-2))}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-5 of 5 results.