cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A303833 Birooted trees: number of unlabeled trees with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 1, 2, 6, 15, 43, 116, 329, 918, 2609, 7391, 21099, 60248, 172683, 495509, 1424937, 4102693, 11830006, 34148859, 98686001, 285459772, 826473782, 2394774727, 6944343654, 20151175658, 58513084011, 170007600051, 494230862633
Offset: 1

Views

Author

R. J. Mathar, Brendan McKay, May 01 2018

Keywords

Crossrefs

Subsets of graphs in A303831. Cf. A000243 (distinguishable roots), A000055 (not rooted).
Third column of A294783.

Programs

  • Maple
    a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597] ;
    g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
    g := 0 ;
    nmax := nops(a000081) ;
    for m from 0 to nmax do
        mhalf := floor(m/2) ;
        ghalf := g81^(mhalf+1) ;
        gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
        if type(m,odd) then
            gcyc := gcyc*g81 ;
        end if;
        g := g+gcyc ;
    end do:
    taylor(g,x=0,nmax) ;
    gfun[seriestolist](%) ; # R. J. Mathar, May 01 2018
  • PARI
    TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2)+O(x*x^n)); Vec((2*t^2-1)/(1-t) + (1+t)/(1-t2), -n)/2} \\ Andrew Howroyd, Dec 04 2020

Formula

G.f.: [g81(x)^2/{1-g81(x)} +(1+g81(x))*g81(x^2)/{1-g81(x^2)}] /2 = [ g243(x) +(1+g81(x))*g107(x^2)]/2, where g81 is the g.f. of A000081, g243 the g.f. of A000243 and g107 the g.f. of A000107. - R. J. Mathar, May 02 2018
a(n) = A027852(n) + A304067(n). - Brendan McKay, May 05 2018
a(n) = A303840(n+2) - A000081(n). - Andrew Howroyd, Dec 04 2020

A304074 Number of simple connected graphs with n nodes rooted at a pair of distinguished vertices.

Original entry on oeis.org

0, 1, 4, 23, 162, 1549, 21090, 446061, 15673518, 961338288, 105752617892, 21155707801451, 7757777336382702, 5245054939576054088, 6571185585793205495484, 15325133281701584879975433, 66813349775478836190531605234, 546646811841381587823502759339055
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=4: one choice to mark two roots in the triangular graph; one choice to mark the two leaves in the linear graph; two choices to mark the center node and a leave (1st root in the center or 2nd root in the center) in the linear graph.
		

Crossrefs

Cf. A001349 (not rooted), A303831 (vertices not distinguished), A304070 (not necessarily connected).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    S(n, r)={my(t=#r+1); vector(n+1, n, if(nAndrew Howroyd, Sep 07 2019

Formula

a(n) = A304072(n) + A304073(n).
G.f.: 2*B(x)/G(x) - (x*C(x)/G(x))^2, where B(x) is the g.f. of A304069, C(x) is the g.f. of A000666 and G(x) is the g.f. of A000088. - Andrew Howroyd, Sep 07 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 07 2019

A126100 Number of rooted connected unlabeled graphs on n nodes.

Original entry on oeis.org

0, 1, 1, 3, 11, 58, 407, 4306, 72489, 2111013, 111172234, 10798144310, 1944301471861, 650202565436890, 404697467417019634, 470133531223369393920, 1022561022228933341815171, 4177761667636803276899047351, 32163582481439081597751699343141, 468019937132164016636736323752098741
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Mar 05 2007

Keywords

Comments

Let G run through all connected unlabeled graphs on n nodes. Add up the numbers of inequivalent nodes (under Aut(G)) for each G.
"Pointed" connected graphs. This has the same relation to A001349 as A000081 does to A000055.
a(0) = 0 because the empty graph cannot be rooted.

Examples

			For 3 nodes G is either a path (2 kinds of nodes) or a triangle (one kind of node), for a total of a(3) = 3.
For the 5-vertex graphs we have 2 * 1 orbit, 6 * 2 orbits, 8 * 3 orbits, 5 * 4 orbits for a total of 2 + 12 + 24 + 20 = 58.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!);
    seq[m_] := Sum[g[n-1, 1] x^(n-1), {n, 0, m}]/Sum[g[n-1, 0] x^(n-1), {n, 0, m}] + O[x]^m // CoefficientList[#, x]& // Prepend[#, 0]&;
    seq[20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    g(n,r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!}
    seq(n)={concat([0], Vec(Ser(vector(n, n, g(n-1,1)))/Ser(vector(n, n, g(n-1,0)))))} \\ Andrew Howroyd, May 03 2018

Formula

The g.f. A(x) = x+x^2+3*x^3+11*x^4+... satisfies f(x) = 1 + A(x)*g(x), where f(x) = 1+x+2*x^2+6*x^3+20*x^4+... is the g.f. for A000666 and g(x) = 1+x+2*x^2+4*x^3+11*x^4+... is the g.f. for A000088. - Brendan McKay

Extensions

a(5)-a(9) computed by Gordon F. Royle, Mar 05 2007
a(10) and a(11) computed by Brendan McKay, Mar 05 2007
a(12) onwards computed from the generating function, A000088 and A000666 by David Applegate and N. J. A. Sloane, Mar 06 2007

A339041 Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}

Formula

G.f.: f(x)/g(x) - (r(x)^2 + r(x^2))/2 where f(x), g(x) and r(x) are the g.f.'s of A339064, A000664 and A339039.

A103904 a(n) = n*(n-1)/2 * 2^(n*(n-1)/2).

Original entry on oeis.org

0, 2, 24, 384, 10240, 491520, 44040192, 7516192768, 2473901162496, 1583296743997440, 1981583836043018240, 4869940435459321626624, 23574053482485268906770432, 225305087149939210031640608768
Offset: 1

Views

Author

Ralf Stephan, Feb 21 2005

Keywords

Comments

a(n) is the number of birooted graphs on n labeled nodes. - Andrew Howroyd, Nov 23 2020
Old (incorrect) name was: "Number of perfect matchings of an n X (n+1) Aztec rectangle with the third vertex in the topmost row removed". See Mathematics Stack Exchange for the discussion. - Andrey Zabolotskiy, Jun 05 2022

Crossrefs

Programs

  • PARI
    a(n)={binomial(n,2)*2^binomial(n,2)} \\ Andrew Howroyd, Nov 23 2020

Formula

a(n) = A000217(n-1) * A006125(n).
a(n) = 2*A095351(n). - Andrew Howroyd, Nov 23 2020
a(n) = A036289(n*(n-1)/2). - Michael Somos, Feb 28 2021

Extensions

Name replaced by a formula, a(1) changed from 1 to 0, and entry edited by Andrey Zabolotskiy, Jun 05 2022

A303829 Birooted graphs: number of unlabeled graphs with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 2, 6, 28, 148, 1144, 13128, 250240, 8295664, 494367376, 53628829952, 10655018252544, 3893626388008448, 2627758027841688960, 3289042848785452985600, 7666804477507744021487616, 33416397343695235205887366144, 273365202164844511328577434284160
Offset: 1

Views

Author

Brendan McKay, May 01 2018

Keywords

Crossrefs

Cf. A303831 (connected), A303833 (trees), A126122.

Formula

a(n) = 2 * A126122(n). - Alois P. Heinz, May 01 2018

A304311 Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
Offset: 0

Views

Author

R. J. Mathar, May 10 2018

Keywords

Examples

			Triangle begins
      1;
      1,     1;
      1,     1,      1;
      2,     3,      3,      2;
      6,    11,     16,     11,      6;
     21,    58,     98,     98,     58,     21;
    112,   407,    879,   1087,    879,    407,    112;
    853,  4306,  11260,  17578,  17578,  11260,   4306,   853;
  11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
		

Crossrefs

Cf. A054921 (row sums), A001349 (1st column), A126100 (2nd column), A303831 (3rd column), A294783 (trees).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    S(n,y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1,#p,1+y^p[i])); s/n!}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
    {my(A=InvEulerMT(vector(10, n, S(n,y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n,A[n],1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018

Formula

T(n,k) = T(n,n-k).

A304071 Number of simple connected graphs with n nodes rooted at one non-edge.

Original entry on oeis.org

0, 0, 1, 6, 42, 402, 5381, 112776, 3935471, 240684836, 26449057257, 5289513580458, 1939502108505917, 1311274498490104492, 1642800188822966309834, 3831285832174735713684706, 16703340559932677463553709189, 136661710199022168890320488632600, 2105815888079982128884579271408161673, 61310553163194788144046000967760340771668
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=1: the non-edge joins the two leaves. a(4)=6: quadrangle: the non-edge is a diagonal; triangle with protruding edge: the non-edge joins the leaf with a node of degree 2; quadrangle with diagonal: the non-edge is the other diagonal; tetrahedron: no contribution; linear chain: the non-edge either joins the two leaves or a leaf with a node at distance 2; star graph: the non-edge joins two leaves.
		

Crossrefs

Cf. A001349 (not rooted), A126122 (not necessarily connected)

Programs

Formula

a(n) + A303830(n) = A303831(n).

A340029 Number of unlabeled 2-connected graphs with n vertices rooted at a pair of indistinguishable vertices.

Original entry on oeis.org

0, 1, 1, 6, 37, 388, 6004, 148759, 5974184, 404509191, 47552739892, 9923861406343, 3735194287263442, 2565376853616300801, 3244070698095148283628, 7607050619214875184974489, 33269229977451262849539412860, 272689940536978851416633440863567
Offset: 1

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    blockGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    cycleIndexSeries(n)={sCartProd(blockGraphs(n), x^2 * symGroupCycleIndex(2) * symGroupSeries(n-2))}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-9 of 9 results.