A303833
Birooted trees: number of unlabeled trees with n nodes rooted at 2 indistinguishable roots.
Original entry on oeis.org
0, 1, 2, 6, 15, 43, 116, 329, 918, 2609, 7391, 21099, 60248, 172683, 495509, 1424937, 4102693, 11830006, 34148859, 98686001, 285459772, 826473782, 2394774727, 6944343654, 20151175658, 58513084011, 170007600051, 494230862633
Offset: 1
-
a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597] ;
g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
g := 0 ;
nmax := nops(a000081) ;
for m from 0 to nmax do
mhalf := floor(m/2) ;
ghalf := g81^(mhalf+1) ;
gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
if type(m,odd) then
gcyc := gcyc*g81 ;
end if;
g := g+gcyc ;
end do:
taylor(g,x=0,nmax) ;
gfun[seriestolist](%) ; # R. J. Mathar, May 01 2018
-
TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2)+O(x*x^n)); Vec((2*t^2-1)/(1-t) + (1+t)/(1-t2), -n)/2} \\ Andrew Howroyd, Dec 04 2020
A304074
Number of simple connected graphs with n nodes rooted at a pair of distinguished vertices.
Original entry on oeis.org
0, 1, 4, 23, 162, 1549, 21090, 446061, 15673518, 961338288, 105752617892, 21155707801451, 7757777336382702, 5245054939576054088, 6571185585793205495484, 15325133281701584879975433, 66813349775478836190531605234, 546646811841381587823502759339055
Offset: 1
a(3)=4: one choice to mark two roots in the triangular graph; one choice to mark the two leaves in the linear graph; two choices to mark the center node and a leave (1st root in the center or 2nd root in the center) in the linear graph.
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
S(n, r)={my(t=#r+1); vector(n+1, n, if(nAndrew Howroyd, Sep 07 2019
A126100
Number of rooted connected unlabeled graphs on n nodes.
Original entry on oeis.org
0, 1, 1, 3, 11, 58, 407, 4306, 72489, 2111013, 111172234, 10798144310, 1944301471861, 650202565436890, 404697467417019634, 470133531223369393920, 1022561022228933341815171, 4177761667636803276899047351, 32163582481439081597751699343141, 468019937132164016636736323752098741
Offset: 0
For 3 nodes G is either a path (2 kinds of nodes) or a triangle (one kind of node), for a total of a(3) = 3.
For the 5-vertex graphs we have 2 * 1 orbit, 6 * 2 orbits, 8 * 3 orbits, 5 * 4 orbits for a total of 2 + 12 + 24 + 20 = 58.
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!);
seq[m_] := Sum[g[n-1, 1] x^(n-1), {n, 0, m}]/Sum[g[n-1, 0] x^(n-1), {n, 0, m}] + O[x]^m // CoefficientList[#, x]& // Prepend[#, 0]&;
seq[20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
g(n,r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!}
seq(n)={concat([0], Vec(Ser(vector(n, n, g(n-1,1)))/Ser(vector(n, n, g(n-1,0)))))} \\ Andrew Howroyd, May 03 2018
A339041
Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}
A103904
a(n) = n*(n-1)/2 * 2^(n*(n-1)/2).
Original entry on oeis.org
0, 2, 24, 384, 10240, 491520, 44040192, 7516192768, 2473901162496, 1583296743997440, 1981583836043018240, 4869940435459321626624, 23574053482485268906770432, 225305087149939210031640608768
Offset: 1
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97, doi:10.1006/jcta.1996.2725.
- N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating sign matrices and domino tilings, Journal of Algebraic Combinatorics 1 (1992), 111-132 (Part I), 219-234 (Part II); arXiv:math/9201305 [math.CO], 1992.
- H. Helfgott and I. M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- C. Krattenthaler, Schur function identities and the number of perfect matchings of Aztec holey rectangles, arXiv:math/9712204 [math.CO], 1997.
- Mathematics Stack Exchange, Mistake in OEIS A103904?, 2021.
Name replaced by a formula, a(1) changed from 1 to 0, and entry edited by
Andrey Zabolotskiy, Jun 05 2022
A303829
Birooted graphs: number of unlabeled graphs with n nodes rooted at 2 indistinguishable roots.
Original entry on oeis.org
0, 2, 6, 28, 148, 1144, 13128, 250240, 8295664, 494367376, 53628829952, 10655018252544, 3893626388008448, 2627758027841688960, 3289042848785452985600, 7666804477507744021487616, 33416397343695235205887366144, 273365202164844511328577434284160
Offset: 1
A304311
Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
Offset: 0
Triangle begins
1;
1, 1;
1, 1, 1;
2, 3, 3, 2;
6, 11, 16, 11, 6;
21, 58, 98, 98, 58, 21;
112, 407, 879, 1087, 879, 407, 112;
853, 4306, 11260, 17578, 17578, 11260, 4306, 853;
11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
S(n,y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1,#p,1+y^p[i])); s/n!}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
{my(A=InvEulerMT(vector(10, n, S(n,y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n,A[n],1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018
A304071
Number of simple connected graphs with n nodes rooted at one non-edge.
Original entry on oeis.org
0, 0, 1, 6, 42, 402, 5381, 112776, 3935471, 240684836, 26449057257, 5289513580458, 1939502108505917, 1311274498490104492, 1642800188822966309834, 3831285832174735713684706, 16703340559932677463553709189, 136661710199022168890320488632600, 2105815888079982128884579271408161673, 61310553163194788144046000967760340771668
Offset: 1
a(3)=1: the non-edge joins the two leaves. a(4)=6: quadrangle: the non-edge is a diagonal; triangle with protruding edge: the non-edge joins the leaf with a node of degree 2; quadrangle with diagonal: the non-edge is the other diagonal; tetrahedron: no contribution; linear chain: the non-edge either joins the two leaves or a leaf with a node at distance 2; star graph: the non-edge joins two leaves.
A340029
Number of unlabeled 2-connected graphs with n vertices rooted at a pair of indistinguishable vertices.
Original entry on oeis.org
0, 1, 1, 6, 37, 388, 6004, 148759, 5974184, 404509191, 47552739892, 9923861406343, 3735194287263442, 2565376853616300801, 3244070698095148283628, 7607050619214875184974489, 33269229977451262849539412860, 272689940536978851416633440863567
Offset: 1
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
blockGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
cycleIndexSeries(n)={sCartProd(blockGraphs(n), x^2 * symGroupCycleIndex(2) * symGroupSeries(n-2))}
{ my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-9 of 9 results.
Comments