A338487
a(n) is the number of non-isomorphic, serial/parallel indecomposable resistor networks with n edges, n >= 5, allowing dead ends.
Original entry on oeis.org
1, 5, 36, 225, 1453, 9228, 58701, 372695, 2370155, 15117459, 96868355, 624326820, 4051597971, 26496771687, 174749567296, 1162909625384, 7812487626519, 53005074235282, 363305517314289, 2516343623698964, 17615995074375601, 124669825295709879, 892060223018406365
Offset: 5
a(5) = 1. The only serial/parallel nondecomposable network with 5 resistors:
.
(+)-----A
The "bridge" / \
see A337516 B---C
\ /
(-)-----Z
.
a(6) = 5. Constructed from the bridge with 5 resistors.
Allowed ways of adding a new edge are:
* an existing resistor is replaced by two parallel (N1, N2).
* a new resistor is appended (N3).
* an existing resistor is replaced by two serial (N4, N5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .
.-A . A . A
/ / \ . / \ . D / \
/ / \ . / \ . | / \
/ / \ . / \ . | / \
| / \ . / \ . | / \
|/ \ . /.-------.\ . |/ \
B-----------C . B. .C . B-----------C
\ / . \`-------´/ . \ /
\ / . \ / . \ /
\ / . \ / . \ /
\ / . \ / . \ /
\ / . \ / . \ /
Z . Z . Z
. .
N1: new edge . N2: new edge . N3: new node D
A-B . B-C . with edge B-D
. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
A . A
/ \ . / \
/ \ . / \
D \ . / \
/ \ . / \
/ \ . / \
B-----------C . B-----D-----C
\ / . \ /
\ / . \ /
\ / . \ /
\ / . \ /
\ / . \ /
Z . Z
.
N4: new node D . N5: new node D
A-B now A-D-B . B-C now B-D-C
.
. . . . . . . . . . . . . . . . . . . . .
a(7) = 36. There are 24 interesting networks without dead ends.
See the pdf document with their description in the link section.
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
- Allan Gottlieb, Oct 3, 2003 addendum (Karnofsky).
- Andrew Howroyd, PARI Program
- Joel Karnofsky, Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003, Feb 23, 2004.
- Rainer Rosenthal, Maple Program, Dec 02 2020.
- Rainer Rosenthal, The 24 networks with 7 resistors without dead ends (version 2), Feb 08 2021.
For graphs with two distinguished nodes see
A304074.
-
SetA338487(5) := {"011111"}: # "bridge" adjacency matrix coded
for n from 6 to MAXEDGES do
SetA338487(n) := C_D_E(SetA338487(n-1)); # see link section
od:
seq(nops(SetA338487(n)),n=1..MAXEDGES); # Rainer Rosenthal, Dec 02 2020
A339040
Number of unlabeled connected simple graphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 3, 10, 35, 125, 460, 1747, 6830, 27502, 113987, 485971, 2129956, 9591009, 44341610, 210345962, 1023182861, 5100235807, 26035673051, 136023990102, 726877123975, 3970461069738, 22156281667277, 126234185382902, 733899631974167, 4351500789211840
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}
A304070
Number of simple graphs with n vertices rooted at a pair of distinguished vertices.
Original entry on oeis.org
0, 2, 8, 40, 240, 1992, 24416, 483040, 16343872, 982635280, 106979975168, 21285548190080, 7783083940331520, 5254164116114948480, 6577258363669088914432, 15332656940815954900371968, 66830735142688170751257497600, 546722015615195079134707942219904
Offset: 1
a(3)=8: 1 for the graph with no edge, 3 for the graph with one edge, 3 for the graph with two edges, 1 for the triangle.
A304072
Number of simple connected graphs with n nodes rooted at one oriented edge.
Original entry on oeis.org
0, 1, 3, 15, 95, 848, 11043, 227978, 7915413, 482871723, 52989880632, 10588770680260, 3880844130502271, 2623179650433475894, 3285998146525888516756, 7663037181052161495721168, 33407697920116540678510839469, 273327584706334343769636571729201
Offset: 1
a(3)=3: one choice of orienting an edge in the triangle graph; two choices of orienting an edge in the linear graph (orientation towards or away from the center node).
-
nmax = 20;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a69[n_] := If[n < 2, 0, s = 0; Do[s += permcount[p]*(2^(2*Length[p] + edges[p])), {p, IntegerPartitions[n - 2]}]; s/(n - 2)!];
a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
gf = Sum[a69[n] x^n, {n, 0, nmax}]/Sum[a88[n] x^n, {n, 0, nmax}]+O[x]^nmax;
CoefficientList[gf, x] // Rest (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
g(n,r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!}
seq(n)={concat([0], Vec(Ser(vector(n,n,g(n-1,2)))/Ser(vector(n,n,g(n-1,0)))))} \\ Andrew Howroyd, May 06 2018
A304073
Number of simple connected graphs with n nodes rooted at one oriented non-edge.
Original entry on oeis.org
0, 0, 1, 8, 67, 701, 10047, 218083, 7758105, 478466565, 52762737260, 10566937121191, 3876933205880431, 2621875289142578194, 3285187439267316978728, 7662096100649423384254265, 33405651855362295512020765765, 273319227135047244053866187609854
Offset: 1
a(3)=1: no contribution from the triangle graph; one case of joining the leaves of the linear graph.
a(4)=8: we start from the 6 cases of non-oriented non-edges of A304071 and note two geometries where the orientation makes a difference: for the triangular graph with a protruding edge the orientation matters (to or from the leaf), and also for the linear graph with 4 nodes (to or from the leaf).
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
S(n, r)={my(t=#r+1); vector(n+1, n, if(nAndrew Howroyd, Sep 07 2019
A340028
Number of unlabeled 2-connected graphs with n vertices rooted at a pair of noninterchangeable vertices.
Original entry on oeis.org
0, 1, 1, 7, 55, 655, 11147, 287791, 11787747, 804475261, 94875366649, 19825870580671, 7466490852631207, 5129453728126116131, 6487332587944013948099, 15213161506747424007012971, 66536415576917924594383104139, 545371527333985035460963541248785
Offset: 1
-
\\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sPoint(sSolve( sLog( gcr/(x*sv(1)) ), gcr ))}
{ my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-6 of 6 results.
Comments