cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339063 Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}];
    G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!];
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
    seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!}
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}

A304074 Number of simple connected graphs with n nodes rooted at a pair of distinguished vertices.

Original entry on oeis.org

0, 1, 4, 23, 162, 1549, 21090, 446061, 15673518, 961338288, 105752617892, 21155707801451, 7757777336382702, 5245054939576054088, 6571185585793205495484, 15325133281701584879975433, 66813349775478836190531605234, 546646811841381587823502759339055
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=4: one choice to mark two roots in the triangular graph; one choice to mark the two leaves in the linear graph; two choices to mark the center node and a leave (1st root in the center or 2nd root in the center) in the linear graph.
		

Crossrefs

Cf. A001349 (not rooted), A303831 (vertices not distinguished), A304070 (not necessarily connected).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    S(n, r)={my(t=#r+1); vector(n+1, n, if(nAndrew Howroyd, Sep 07 2019

Formula

a(n) = A304072(n) + A304073(n).
G.f.: 2*B(x)/G(x) - (x*C(x)/G(x))^2, where B(x) is the g.f. of A304069, C(x) is the g.f. of A000666 and G(x) is the g.f. of A000088. - Andrew Howroyd, Sep 07 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 07 2019

A304069 Number of simple graphs on n vertices rooted at one oriented edge.

Original entry on oeis.org

0, 1, 4, 20, 120, 996, 12208, 241520, 8171936, 491317640, 53489987584, 10642774095040, 3891541970165760, 2627082058057474240, 3288629181834544457216, 7666328470407977450185984, 33415367571344085375628748800, 273361007807597539567353971109952
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Comments

This is also the number of simple graphs rooted at an oriented non-edge.
The graphs do not need to be connected here; see A304072 for the connected graphs.

Examples

			a(3)=4: no contribution from the graph with 3 isolated nodes. 1 case of the connected graph with 2 nodes and an isolated node. 2 cases of the linear graph with 3 nodes (orientation either towards or away from the middle node). 1 case of the triangular graph.
		

Crossrefs

Cf. A000088 (not rooted).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]] ], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[#, 2]& /@ v];
    a[n_] := If[n < 2, 0, s = 0; Do[s += permcount[p]*(2^(2*Length[p] + edges[p])), {p, IntegerPartitions[n - 2]}]; s/(n - 2)!];
    Array[a, 18] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n)= {if(n<2, 0, my(s=0); forpart(p=n-2, s+=permcount(p)*(2^(2*#p+edges(p)))); s/(n-2)!)} \\ Andrew Howroyd, May 06 2018

Formula

2*a(n) = A304070(n).

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 06 2018

A340028 Number of unlabeled 2-connected graphs with n vertices rooted at a pair of noninterchangeable vertices.

Original entry on oeis.org

0, 1, 1, 7, 55, 655, 11147, 287791, 11787747, 804475261, 94875366649, 19825870580671, 7466490852631207, 5129453728126116131, 6487332587944013948099, 15213161506747424007012971, 66536415576917924594383104139, 545371527333985035460963541248785
Offset: 1

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sPoint(sSolve( sLog( gcr/(x*sv(1)) ), gcr ))}
    { my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) }
Showing 1-4 of 4 results.