A339065
Number of unlabeled loopless multigraphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 4, 17, 69, 281, 1147, 4784, 20345, 88726, 396971, 1823920, 8605364, 41684417, 207201343, 1056244832, 5518054182, 29521703655, 161625956908, 904857279576, 5176569819167, 30241443710950, 180293374961036, 1096240011165724, 6793998104717138, 42894087222036022, 275735424352928682
Offset: 0
The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i - 1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 1, Length[v]}];
G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1/(1 - x^#) &], {p, IntegerPartitions[n]}]; s/n!];
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
seq[15] (* Jean-François Alcover, Dec 01 2020, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1/(1-x^i))); s/n!}
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}
A053419
Number of graphs with loops (symmetric relations) with n edges.
Original entry on oeis.org
1, 2, 5, 14, 38, 107, 318, 972, 3111, 10410, 36371, 132656, 504636, 1998361, 8224448, 35112342, 155211522, 709123787, 3342875421, 16234342515, 81102926848, 416244824068, 2192018373522, 11831511359378, 65387590986455, 369661585869273, 2135966349269550, 12604385044890628
Offset: 0
Cf.
A000664,
A000666,
A007716,
A007717,
A020555,
A050535,
A053419,
A094574,
A191970 (multisets),
A316974,
A339063.
A303832
The number of edge-rooted unlabeled connected graphs with n edges.
Original entry on oeis.org
1, 1, 4, 10, 32, 101, 346, 1220, 4517, 17338, 69107, 285009, 1215015, 5344224, 24223641, 113001129, 541913075, 2668817544, 13484234188, 69831773559, 370361639587, 2009988998148, 11153858854425, 63242354288220, 366140089188603, 2163036956456422, 13031489297543608
Offset: 1
a(1)=1: the connected graph with 1 edge (which is rooted).
a(2)=1: the connected graph with 2 edges (one rooted).
a(3)=4: the triangle graph with one choice of rooting, the linear tree with either the middle or a terminating edge rooted, the star graph with one edge rooted.
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*G(2*n, x+A, [])*(1+x)))} \\ Andrew Howroyd, Nov 21 2020
A339040
Number of unlabeled connected simple graphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 3, 10, 35, 125, 460, 1747, 6830, 27502, 113987, 485971, 2129956, 9591009, 44341610, 210345962, 1023182861, 5100235807, 26035673051, 136023990102, 726877123975, 3970461069738, 22156281667277, 126234185382902, 733899631974167, 4351500789211840
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}
A339041
Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}
A339039
Number of unlabeled connected simple graphs with n edges rooted at one distinguished vertex.
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 114, 367, 1248, 4446, 16526, 63914, 256642, 1067388, 4590201, 20376849, 93240065, 439190047, 2126970482, 10579017047, 53983000003, 282345671127, 1512273916781, 8287870474339, 46438619162441, 265840311066579
Offset: 0
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}
A339044
Number of unlabeled connected simple graphs with n edges rooted at one oriented edge.
Original entry on oeis.org
1, 2, 6, 18, 57, 188, 651, 2336, 8719, 33741, 135185, 559908, 2394326, 10557283, 47943126, 223987316, 1075455181, 5301593544, 26807904317, 138924912857, 737220195148, 4002876571636, 22221898966507, 126042573704637, 729944250603862, 4313430995825272
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1, 1])/G(2*n, x+A, [])/(1+x))}
A339064
Number of unlabeled simple graphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 3, 9, 28, 87, 276, 909, 3086, 10879, 39821, 151363, 597062, 2442044, 10342904, 45301072, 204895366, 955661003, 4590214994, 22675644514, 115068710553, 599149303234, 3197694533771, 17475917252052, 97712883807625, 558481251055893, 3260409769087068
Offset: 0
The a(1) = 3 cases correspond to a single edge which can be attached to zero, one or both of the roots.
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/2)}
A126133
Number of edge-rooted unlabeled graphs with n edges.
Original entry on oeis.org
1, 2, 7, 21, 66, 210, 699, 2387, 8492, 31329, 120034, 477028, 1965016, 8377888, 36923184, 167972182, 787688821, 3802526173, 18873118341, 96195592212, 502953711022, 2694740822749, 14781176429303, 82931707378322
Offset: 1
a(3)=7: the triangular graph with one edge rooted. The disconnected graph of the connected linear graph with 3 nodes aside the connected graph with 2 nodes, 2 choices for the root. The three disconnected graphs with 3 graphs on 2 nodes, one of the three with the root. The connected star graph with one edge rooted. The connected linear graph with four nodes, 2 choices for the root. - _R. J. Mathar_, May 03 2018
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*(1+x)))} \\ Andrew Howroyd, Nov 21 2020
Showing 1-9 of 9 results.
Comments