cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A339063 Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}];
    G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!];
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
    seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!}
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}

A303832 The number of edge-rooted unlabeled connected graphs with n edges.

Original entry on oeis.org

1, 1, 4, 10, 32, 101, 346, 1220, 4517, 17338, 69107, 285009, 1215015, 5344224, 24223641, 113001129, 541913075, 2668817544, 13484234188, 69831773559, 370361639587, 2009988998148, 11153858854425, 63242354288220, 366140089188603, 2163036956456422, 13031489297543608
Offset: 1

Views

Author

R. J. Mathar, May 04 2018

Keywords

Examples

			a(1)=1: the connected graph with 1 edge (which is rooted).
a(2)=1: the connected graph with 2 edges (one rooted).
a(3)=4: the triangle graph with one choice of rooting, the linear tree with either the middle or a terminating edge rooted, the star graph with one edge rooted.
		

Crossrefs

Cf. A126133 (not necessarily connected), A000664, A303830 (by number of nodes).

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*G(2*n, x+A, [])*(1+x)))} \\ Andrew Howroyd, Nov 21 2020

Formula

G.f. A(x) satisfies: A(x)*A000664(x) = A126133(x).

A339041 Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}

Formula

G.f.: f(x)/g(x) - (r(x)^2 + r(x^2))/2 where f(x), g(x) and r(x) are the g.f.'s of A339064, A000664 and A339039.

A339042 Number of unlabeled connected loopless multigraphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 17, 73, 319, 1423, 6499, 30374, 145302, 711177, 3559690, 18212192, 95193547, 508083746, 2767835600, 15382476029, 87177582535, 503610832756, 2964300557548, 17771210411578, 108471258414870, 673836620069035, 4258727230198033, 27373904651169023, 178885471934461869
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := Module[{g}, g = G[2n, x+O[x]^n, {}]; G[2n, x+O[x]^n, {1, 1}]/g - (G[2n, x+O[x]^n, {1}]/g)^2 // CoefficientList[#, x]& // Rest];
    seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}

Formula

G.f.: f(x) - g(x)^2 where x*f(x) is the g.f. of A339037 and g(x) is the g.f. of A339036.

A339039 Number of unlabeled connected simple graphs with n edges rooted at one distinguished vertex.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 114, 367, 1248, 4446, 16526, 63914, 256642, 1067388, 4590201, 20376849, 93240065, 439190047, 2126970482, 10579017047, 53983000003, 282345671127, 1512273916781, 8287870474339, 46438619162441, 265840311066579
Offset: 0

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}

Formula

G.f.: f(x)/g(x) where f(x) is the g.f. of A053419 and g(x) is the g.f. of A000664.

A339044 Number of unlabeled connected simple graphs with n edges rooted at one oriented edge.

Original entry on oeis.org

1, 2, 6, 18, 57, 188, 651, 2336, 8719, 33741, 135185, 559908, 2394326, 10557283, 47943126, 223987316, 1075455181, 5301593544, 26807904317, 138924912857, 737220195148, 4002876571636, 22221898966507, 126042573704637, 729944250603862, 4313430995825272
Offset: 1

Views

Author

Andrew Howroyd, Nov 21 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1, 1])/G(2*n, x+A, [])/(1+x))}

Formula

G.f.: x*f(x)/((1+x)*g(x)) where f(x) is the g.f. of A339063 and g(x) is the g.f. of A000664.
Showing 1-6 of 6 results.