cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339063 Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}];
    G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!];
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
    seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!}
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}

A339041 Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}

Formula

G.f.: f(x)/g(x) - (r(x)^2 + r(x^2))/2 where f(x), g(x) and r(x) are the g.f.'s of A339064, A000664 and A339039.

A126133 Number of edge-rooted unlabeled graphs with n edges.

Original entry on oeis.org

1, 2, 7, 21, 66, 210, 699, 2387, 8492, 31329, 120034, 477028, 1965016, 8377888, 36923184, 167972182, 787688821, 3802526173, 18873118341, 96195592212, 502953711022, 2694740822749, 14781176429303, 82931707378322
Offset: 1

Views

Author

Vladeta Jovovic, Mar 07 2007

Keywords

Examples

			a(3)=7: the triangular graph with one edge rooted. The disconnected graph of the connected linear graph with 3 nodes aside the connected graph with 2 nodes, 2 choices for the root. The three disconnected graphs with 3 graphs on 2 nodes, one of the three with the root. The connected star graph with one edge rooted. The connected linear graph with four nodes, 2 choices for the root. - _R. J. Mathar_, May 03 2018
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000664, A126122, A303832 (connected), A339063, A339064.

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*(1+x)))} \\ Andrew Howroyd, Nov 21 2020

Formula

G.f.: f(x)*x/(1 + x) where f(x) is the g.f. of A339064. - Andrew Howroyd, Nov 22 2020

Extensions

Terms a(10) onward from Max Alekseyev, May 03 2018

A339066 Number of unlabeled loopless multigraphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 3, 12, 44, 171, 664, 2688, 11133, 47682, 210275, 955940, 4473128, 21532160, 106504216, 540824997, 2816636171, 15031261538, 82123830645, 458979942506, 2621982351176, 15298840540234, 91112889589166, 553492059017778, 3427579611162937, 21625096669854023, 138927108066308515
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 3 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Cf. A050535, A007717 (one root), A339043, A339064, A339065.

Programs

  • Mathematica
    seq[n_] := G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}] // CoefficientList[#/2, x]&;
    seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/2)}
Showing 1-4 of 4 results.