A339063
Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0
The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}];
G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!];
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!}
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}
A339041
Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}
A126133
Number of edge-rooted unlabeled graphs with n edges.
Original entry on oeis.org
1, 2, 7, 21, 66, 210, 699, 2387, 8492, 31329, 120034, 477028, 1965016, 8377888, 36923184, 167972182, 787688821, 3802526173, 18873118341, 96195592212, 502953711022, 2694740822749, 14781176429303, 82931707378322
Offset: 1
a(3)=7: the triangular graph with one edge rooted. The disconnected graph of the connected linear graph with 3 nodes aside the connected graph with 2 nodes, 2 choices for the root. The three disconnected graphs with 3 graphs on 2 nodes, one of the three with the root. The connected star graph with one edge rooted. The connected linear graph with four nodes, 2 choices for the root. - _R. J. Mathar_, May 03 2018
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*(1+x)))} \\ Andrew Howroyd, Nov 21 2020
A339066
Number of unlabeled loopless multigraphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 3, 12, 44, 171, 664, 2688, 11133, 47682, 210275, 955940, 4473128, 21532160, 106504216, 540824997, 2816636171, 15031261538, 82123830645, 458979942506, 2621982351176, 15298840540234, 91112889589166, 553492059017778, 3427579611162937, 21625096669854023, 138927108066308515
Offset: 0
The a(1) = 3 cases correspond to a single edge which can be attached to zero, one or both of the roots.
-
seq[n_] := G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}] // CoefficientList[#/2, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/2)}
Showing 1-4 of 4 results.