cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339065 Number of unlabeled loopless multigraphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 17, 69, 281, 1147, 4784, 20345, 88726, 396971, 1823920, 8605364, 41684417, 207201343, 1056244832, 5518054182, 29521703655, 161625956908, 904857279576, 5176569819167, 30241443710950, 180293374961036, 1096240011165724, 6793998104717138, 42894087222036022, 275735424352928682
Offset: 0

Views

Author

Andrew Howroyd, Nov 22 2020

Keywords

Examples

			The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
		

Crossrefs

Cf. A050535, A007717 (one root), A339042, A339063, A339066.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i - 1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 1, Length[v]}];
    G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1/(1 - x^#) &], {p, IntegerPartitions[n]}]; s/n!];
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
    seq[15] (* Jean-François Alcover, Dec 01 2020, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1/(1-x^i))); s/n!}
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}

A339038 Number of unlabeled connected loopless multigraphs with n edges rooted at one unoriented edge.

Original entry on oeis.org

1, 2, 7, 23, 88, 339, 1396, 5915, 26080, 118539, 555678, 2678458, 13262193, 67353325, 350493424, 1866989802, 10171394388, 56631507822, 322011612423, 1868702977253, 11061267210030, 66745602611831, 410360493588788, 2569318971123439, 16374787277199728, 106180292431149021
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := (G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}])/G[2n, x + O[x]^n, {}] // CoefficientList[#/2, x]&;
    seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1,1]) + G(2*n, x+A, [2]))/G(2*n, x+A, []))/2}

Formula

G.f.: x*f(x)/g(x) where f(x) is the g.f. of A339066 and g(x) is the g.f. of A050535.
Showing 1-2 of 2 results.