cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A339036 Number of unlabeled connected loopless multigraphs with n edges rooted at one distinguished vertex.

Original entry on oeis.org

1, 1, 3, 9, 30, 104, 390, 1518, 6208, 26372, 116221, 529341, 2487054, 12027502, 59778867, 304916272, 1594273763, 8535706749, 46753269749, 261771468438, 1497087288210, 8739579074131, 52045067963540, 315980654042243, 1954770128712348, 12315770916526091
Offset: 0

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := G[2n, x+O[x]^n, {1}]/G[2n, x+O[x]^n, {}] // CoefficientList[#, x]&;
    seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}

Formula

G.f.: f(x)/g(x) where f(x) is the g.f. of A007717 and g(x) is the g.f. of A050535.

A339037 Number of unlabeled connected loopless multigraphs with n edges rooted at one oriented edge.

Original entry on oeis.org

1, 3, 11, 41, 160, 641, 2672, 11479, 50938, 232830, 1095151, 5292990, 26257328, 133548307, 695752146, 3709509938, 20224607541, 112675185837, 641016837378, 3721624588590, 22037618432547, 133023405207408, 818085097509494, 5123460267381837, 32660335570381961, 211825198708110059
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]/G[2n, x+A, {}] // CoefficientList[#, x]&]; (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1,1])/G(2*n, x+A, []))}

Formula

G.f.: x*f(x)/g(x) where f(x) is the g.f. of A339065 and g(x) is the g.f. of A050535.

A339042 Number of unlabeled connected loopless multigraphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 4, 17, 73, 319, 1423, 6499, 30374, 145302, 711177, 3559690, 18212192, 95193547, 508083746, 2767835600, 15382476029, 87177582535, 503610832756, 2964300557548, 17771210411578, 108471258414870, 673836620069035, 4258727230198033, 27373904651169023, 178885471934461869
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := Module[{g}, g = G[2n, x+O[x]^n, {}]; G[2n, x+O[x]^n, {1, 1}]/g - (G[2n, x+O[x]^n, {1}]/g)^2 // CoefficientList[#, x]& // Rest];
    seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}

Formula

G.f.: f(x) - g(x)^2 where x*f(x) is the g.f. of A339037 and g(x) is the g.f. of A339036.

A339043 Number of unlabeled connected loopless multigraphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 3, 11, 43, 178, 767, 3425, 15783, 74775, 363639, 1811808, 9239430, 48175945, 256658465, 1396152633, 7750325528, 43882706171, 253308596926, 1490040961732, 8928063141435, 54469529215562, 338236254603888, 2136952452531537, 13731571816349732, 89710429044324926
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := Module[{g, gr}, g = G[2n, x+O[x]^n, {}]; gr = G[2n, x+O[x]^n, {1}]/g; G[2n, x+O[x]^n, {1, 1}]/g - gr^2 + G[2n, x+O[x]^n, {2}]/g - (Normal[gr] /. x -> x^2) // CoefficientList[#/2, x]& // Rest];
    seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}

Formula

G.f: f(g) - (g(x)^2 + g(x^2))/2 where x*f(x) is the g.f. of A339038 and g(x) is the g.f. of A339036.

A338999 Number of connected multigraphs with n edges and rooted at two indistinguishable vertices whose removal leaves a connected graph.

Original entry on oeis.org

1, 1, 3, 11, 43, 180, 804, 3763, 18331, 92330, 478795, 2547885, 13880832, 77284220, 439146427, 2543931619, 15010717722, 90154755356, 550817917537, 3421683388385, 21601986281226, 138548772267326, 902439162209914, 5967669851051612, 40053432076016812
Offset: 1

Views

Author

Rainer Rosenthal, Nov 18 2020

Keywords

Comments

This sequence counts the CDE-descendants of a single edge A-Z.
[C]onnect: different nodes {P,Q} != {A,Z} may form a new edge P-Q.
[D]issect: any edge P-Q may be dissected into P-M-Q with a new node M.
[E]xtend: any node P not in {A,Z} may form a new edge P-Q with a new node Q.
These basic operations were motivated by A338487, which seemed to count the CDE-descendants of K_4 with edge A-Z removed.

Examples

			The a(3) = 3 CDE-descendants of A-Z with 3 edges are
.
         A          A          A
        ( )        /          /
         o        o - o      o - o
         |           /        \
         Z          Z          Z
.
        DCC        DD         DE
.
		

References

  • Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.

Crossrefs

Programs

  • PARI
    \\ See A339065 for G.
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A,[]), gr=G(2*n, x+A,[1])/g, u=InvEulerT(Vec(-1+G(2*n, x+A,[1,1])/(g*gr^2))), t=InvEulerT(Vec(-1+G(2*n, x+A,[2])/(g*subst(gr,x,x^2)))), v=vector(n)); for(n=1, #v, v[n]=(u[n]+t[n]-if(n%2==0,u[n/2]-v[n/2]))/2); v} \\ Andrew Howroyd, Nov 20 2020

Extensions

a(7)-a(25) from Andrew Howroyd, Nov 20 2020
Showing 1-5 of 5 results.