A339036
Number of unlabeled connected loopless multigraphs with n edges rooted at one distinguished vertex.
Original entry on oeis.org
1, 1, 3, 9, 30, 104, 390, 1518, 6208, 26372, 116221, 529341, 2487054, 12027502, 59778867, 304916272, 1594273763, 8535706749, 46753269749, 261771468438, 1497087288210, 8739579074131, 52045067963540, 315980654042243, 1954770128712348, 12315770916526091
Offset: 0
-
seq[n_] := G[2n, x+O[x]^n, {1}]/G[2n, x+O[x]^n, {}] // CoefficientList[#, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}
A339037
Number of unlabeled connected loopless multigraphs with n edges rooted at one oriented edge.
Original entry on oeis.org
1, 3, 11, 41, 160, 641, 2672, 11479, 50938, 232830, 1095151, 5292990, 26257328, 133548307, 695752146, 3709509938, 20224607541, 112675185837, 641016837378, 3721624588590, 22037618432547, 133023405207408, 818085097509494, 5123460267381837, 32660335570381961, 211825198708110059
Offset: 1
-
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]/G[2n, x+A, {}] // CoefficientList[#, x]&]; (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1,1])/G(2*n, x+A, []))}
A339041
Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}
A339042
Number of unlabeled connected loopless multigraphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 4, 17, 73, 319, 1423, 6499, 30374, 145302, 711177, 3559690, 18212192, 95193547, 508083746, 2767835600, 15382476029, 87177582535, 503610832756, 2964300557548, 17771210411578, 108471258414870, 673836620069035, 4258727230198033, 27373904651169023, 178885471934461869
Offset: 1
-
seq[n_] := Module[{g}, g = G[2n, x+O[x]^n, {}]; G[2n, x+O[x]^n, {1, 1}]/g - (G[2n, x+O[x]^n, {1}]/g)^2 // CoefficientList[#, x]& // Rest];
seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}
A339038
Number of unlabeled connected loopless multigraphs with n edges rooted at one unoriented edge.
Original entry on oeis.org
1, 2, 7, 23, 88, 339, 1396, 5915, 26080, 118539, 555678, 2678458, 13262193, 67353325, 350493424, 1866989802, 10171394388, 56631507822, 322011612423, 1868702977253, 11061267210030, 66745602611831, 410360493588788, 2569318971123439, 16374787277199728, 106180292431149021
Offset: 1
-
seq[n_] := (G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}])/G[2n, x + O[x]^n, {}] // CoefficientList[#/2, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1,1]) + G(2*n, x+A, [2]))/G(2*n, x+A, []))/2}
A339066
Number of unlabeled loopless multigraphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 3, 12, 44, 171, 664, 2688, 11133, 47682, 210275, 955940, 4473128, 21532160, 106504216, 540824997, 2816636171, 15031261538, 82123830645, 458979942506, 2621982351176, 15298840540234, 91112889589166, 553492059017778, 3427579611162937, 21625096669854023, 138927108066308515
Offset: 0
The a(1) = 3 cases correspond to a single edge which can be attached to zero, one or both of the roots.
-
seq[n_] := G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}] // CoefficientList[#/2, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/2)}
Showing 1-6 of 6 results.