A339037
Number of unlabeled connected loopless multigraphs with n edges rooted at one oriented edge.
Original entry on oeis.org
1, 3, 11, 41, 160, 641, 2672, 11479, 50938, 232830, 1095151, 5292990, 26257328, 133548307, 695752146, 3709509938, 20224607541, 112675185837, 641016837378, 3721624588590, 22037618432547, 133023405207408, 818085097509494, 5123460267381837, 32660335570381961, 211825198708110059
Offset: 1
-
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]/G[2n, x+A, {}] // CoefficientList[#, x]&]; (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1,1])/G(2*n, x+A, []))}
A339042
Number of unlabeled connected loopless multigraphs with n edges rooted at two noninterchangeable vertices.
Original entry on oeis.org
1, 4, 17, 73, 319, 1423, 6499, 30374, 145302, 711177, 3559690, 18212192, 95193547, 508083746, 2767835600, 15382476029, 87177582535, 503610832756, 2964300557548, 17771210411578, 108471258414870, 673836620069035, 4258727230198033, 27373904651169023, 178885471934461869
Offset: 1
-
seq[n_] := Module[{g}, g = G[2n, x+O[x]^n, {}]; G[2n, x+O[x]^n, {1, 1}]/g - (G[2n, x+O[x]^n, {1}]/g)^2 // CoefficientList[#, x]& // Rest];
seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}
A339043
Number of unlabeled connected loopless multigraphs with n edges rooted at two indistinguishable vertices.
Original entry on oeis.org
1, 3, 11, 43, 178, 767, 3425, 15783, 74775, 363639, 1811808, 9239430, 48175945, 256658465, 1396152633, 7750325528, 43882706171, 253308596926, 1490040961732, 8928063141435, 54469529215562, 338236254603888, 2136952452531537, 13731571816349732, 89710429044324926
Offset: 1
-
seq[n_] := Module[{g, gr}, g = G[2n, x+O[x]^n, {}]; gr = G[2n, x+O[x]^n, {1}]/g; G[2n, x+O[x]^n, {1, 1}]/g - gr^2 + G[2n, x+O[x]^n, {2}]/g - (Normal[gr] /. x -> x^2) // CoefficientList[#/2, x]& // Rest];
seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}
A339038
Number of unlabeled connected loopless multigraphs with n edges rooted at one unoriented edge.
Original entry on oeis.org
1, 2, 7, 23, 88, 339, 1396, 5915, 26080, 118539, 555678, 2678458, 13262193, 67353325, 350493424, 1866989802, 10171394388, 56631507822, 322011612423, 1868702977253, 11061267210030, 66745602611831, 410360493588788, 2569318971123439, 16374787277199728, 106180292431149021
Offset: 1
-
seq[n_] := (G[2n, x + O[x]^n, {1, 1}] + G[2n, x + O[x]^n, {2}])/G[2n, x + O[x]^n, {}] // CoefficientList[#/2, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, after Andrew Howroyd's code for G in A339065 *)
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1,1]) + G(2*n, x+A, [2]))/G(2*n, x+A, []))/2}
A339039
Number of unlabeled connected simple graphs with n edges rooted at one distinguished vertex.
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 114, 367, 1248, 4446, 16526, 63914, 256642, 1067388, 4590201, 20376849, 93240065, 439190047, 2126970482, 10579017047, 53983000003, 282345671127, 1512273916781, 8287870474339, 46438619162441, 265840311066579
Offset: 0
-
\\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}
A339045
Number of connected loopless multigraphs with n edges rooted at two noninterchangeable vertices whose removal leaves a connected graph.
Original entry on oeis.org
1, 1, 4, 16, 69, 307, 1433, 6903, 34337, 175457, 919525, 4931233, 27023894, 151142376, 861880778, 5006906170, 29611120248, 178175786593, 1090266839041, 6781364484106, 42858210422338, 275127506187149, 1793418517202096, 11867326044069470, 79695273536227647
Offset: 1
-
\\ See A339065 for G.
InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A,[]), gr=G(2*n, x+A,[1])/g); InvEulerT(Vec(-1+G(2*n, x+A, [1,1])/(g*gr^2)))}
Showing 1-6 of 6 results.