A180414
Number of different resistances that can be obtained by combining n one-ohm resistors.
Original entry on oeis.org
1, 2, 4, 8, 16, 36, 80, 194, 506, 1400, 4039, 12044, 36406, 111324, 342447, 1064835, 3341434, 10583931, 33728050, 107931849, 346616201
Offset: 0
a(n) counts all resistances that can be obtained with fewer than n resistors as well as with exactly n resistors. Without a resistor the resistance is infinite, i.e., a(0) = 1. One 1-ohm resistor adds resistance 1, so a(1) = 2. Two resistors in parallel give 1/2 ohm, while in series they give 2 ohms. So a(2) is the number of elements in the set {infinity, 1, 1/2, 2}, i.e., a(2) = 4. - _Rainer Rosenthal_, Feb 07 2021
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
A338487
a(n) is the number of non-isomorphic, serial/parallel indecomposable resistor networks with n edges, n >= 5, allowing dead ends.
Original entry on oeis.org
1, 5, 36, 225, 1453, 9228, 58701, 372695, 2370155, 15117459, 96868355, 624326820, 4051597971, 26496771687, 174749567296, 1162909625384, 7812487626519, 53005074235282, 363305517314289, 2516343623698964, 17615995074375601, 124669825295709879, 892060223018406365
Offset: 5
a(5) = 1. The only serial/parallel nondecomposable network with 5 resistors:
.
(+)-----A
The "bridge" / \
see A337516 B---C
\ /
(-)-----Z
.
a(6) = 5. Constructed from the bridge with 5 resistors.
Allowed ways of adding a new edge are:
* an existing resistor is replaced by two parallel (N1, N2).
* a new resistor is appended (N3).
* an existing resistor is replaced by two serial (N4, N5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .
.-A . A . A
/ / \ . / \ . D / \
/ / \ . / \ . | / \
/ / \ . / \ . | / \
| / \ . / \ . | / \
|/ \ . /.-------.\ . |/ \
B-----------C . B. .C . B-----------C
\ / . \`-------ยด/ . \ /
\ / . \ / . \ /
\ / . \ / . \ /
\ / . \ / . \ /
\ / . \ / . \ /
Z . Z . Z
. .
N1: new edge . N2: new edge . N3: new node D
A-B . B-C . with edge B-D
. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
A . A
/ \ . / \
/ \ . / \
D \ . / \
/ \ . / \
/ \ . / \
B-----------C . B-----D-----C
\ / . \ /
\ / . \ /
\ / . \ /
\ / . \ /
\ / . \ /
Z . Z
.
N4: new node D . N5: new node D
A-B now A-D-B . B-C now B-D-C
.
. . . . . . . . . . . . . . . . . . . . .
a(7) = 36. There are 24 interesting networks without dead ends.
See the pdf document with their description in the link section.
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
- Allan Gottlieb, Oct 3, 2003 addendum (Karnofsky).
- Andrew Howroyd, PARI Program
- Joel Karnofsky, Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003, Feb 23, 2004.
- Rainer Rosenthal, Maple Program, Dec 02 2020.
- Rainer Rosenthal, The 24 networks with 7 resistors without dead ends (version 2), Feb 08 2021.
For graphs with two distinguished nodes see
A304074.
-
SetA338487(5) := {"011111"}: # "bridge" adjacency matrix coded
for n from 6 to MAXEDGES do
SetA338487(n) := C_D_E(SetA338487(n-1)); # see link section
od:
seq(nops(SetA338487(n)),n=1..MAXEDGES); # Rainer Rosenthal, Dec 02 2020
A339045
Number of connected loopless multigraphs with n edges rooted at two noninterchangeable vertices whose removal leaves a connected graph.
Original entry on oeis.org
1, 1, 4, 16, 69, 307, 1433, 6903, 34337, 175457, 919525, 4931233, 27023894, 151142376, 861880778, 5006906170, 29611120248, 178175786593, 1090266839041, 6781364484106, 42858210422338, 275127506187149, 1793418517202096, 11867326044069470, 79695273536227647
Offset: 1
-
\\ See A339065 for G.
InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
seq(n)={my(A=O(x*x^n), g=G(2*n, x+A,[]), gr=G(2*n, x+A,[1])/g); InvEulerT(Vec(-1+G(2*n, x+A, [1,1])/(g*gr^2)))}
A339123
Number of 2-connected multigraphs with n edges and rooted at two indistinguishable vertices and have no decomposition into parallel components rooted at the two distinguished vertices.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 24, 123, 661, 3527
Offset: 1
.
a(6) = 4, because the last of these 5 networks (Fig. 5) is not 2-connected: when the middle vertex is removed, then A and Z are part of two separated subgraphs.
.
A A A A A
// \ / \ d \ / \ /|
// \ /___\ / \ / \ / |
o-----o o --- o o-----o o--o--o o--o--o
\ / \ / \ / \ / | /
\ / \ / \ / \ / |/
Z Z Z Z Z
.
Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5
.
Figures 1 to 4 correspond to N1, N2, N4 and N5 in the example section of A338487.
.
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
A339205
Number of 2-connected multigraphs with n edges rooted at two noninterchangeable vertices and have no decomposition into parallel components rooted at the two distinguished vertices.
Original entry on oeis.org
1, 0, 0, 0, 1, 6, 39, 221, 1237
Offset: 1
a(6) = 6, Figures 5 and 6 are A/Z-mirrored images of 1 and 3:
.
A A A A A A
// \ / \ d \ / \ / \ / \
// \ /___\ / \ / \ / \ / \
o-----o o --- o o-----o o--o--o o-----o o-----o
\ / \ / \ / \ / \\ / \ /
\ / \ / \ / \ / \\ / q /
Z Z Z Z Z Z
.
Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6
Showing 1-5 of 5 results.
Comments