cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304074 Number of simple connected graphs with n nodes rooted at a pair of distinguished vertices.

Original entry on oeis.org

0, 1, 4, 23, 162, 1549, 21090, 446061, 15673518, 961338288, 105752617892, 21155707801451, 7757777336382702, 5245054939576054088, 6571185585793205495484, 15325133281701584879975433, 66813349775478836190531605234, 546646811841381587823502759339055
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=4: one choice to mark two roots in the triangular graph; one choice to mark the two leaves in the linear graph; two choices to mark the center node and a leave (1st root in the center or 2nd root in the center) in the linear graph.
		

Crossrefs

Cf. A001349 (not rooted), A303831 (vertices not distinguished), A304070 (not necessarily connected).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    S(n, r)={my(t=#r+1); vector(n+1, n, if(nAndrew Howroyd, Sep 07 2019

Formula

a(n) = A304072(n) + A304073(n).
G.f.: 2*B(x)/G(x) - (x*C(x)/G(x))^2, where B(x) is the g.f. of A304069, C(x) is the g.f. of A000666 and G(x) is the g.f. of A000088. - Andrew Howroyd, Sep 07 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 07 2019

A304072 Number of simple connected graphs with n nodes rooted at one oriented edge.

Original entry on oeis.org

0, 1, 3, 15, 95, 848, 11043, 227978, 7915413, 482871723, 52989880632, 10588770680260, 3880844130502271, 2623179650433475894, 3285998146525888516756, 7663037181052161495721168, 33407697920116540678510839469, 273327584706334343769636571729201
Offset: 1

Views

Author

Brendan McKay, May 05 2018

Keywords

Examples

			a(3)=3: one choice of orienting an edge in the triangle graph; two choices of orienting an edge in the linear graph (orientation towards or away from the center node).
		

Crossrefs

Cf. A000088, A001349 (not rooted), A304069 (not necessarily connected).

Programs

  • Mathematica
    nmax = 20;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a69[n_] := If[n < 2, 0, s = 0; Do[s += permcount[p]*(2^(2*Length[p] + edges[p])), {p, IntegerPartitions[n - 2]}]; s/(n - 2)!];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    gf = Sum[a69[n] x^n, {n, 0, nmax}]/Sum[a88[n] x^n, {n, 0, nmax}]+O[x]^nmax;
    CoefficientList[gf, x] // Rest (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    g(n,r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!}
    seq(n)={concat([0], Vec(Ser(vector(n,n,g(n-1,2)))/Ser(vector(n,n,g(n-1,0)))))} \\ Andrew Howroyd, May 06 2018

Formula

a(n) + A304073(n) = A304074(n).
G.f.: R(x)/G(x) where R(x) is the g.f. of A304069 and G(x) is the g.f. of A000088. - Andrew Howroyd, May 06 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 06 2018
Showing 1-2 of 2 results.