cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A095340 Total number of nodes in all labeled graphs on n nodes.

Original entry on oeis.org

1, 4, 24, 256, 5120, 196608, 14680064, 2147483648, 618475290624, 351843720888320, 396316767208603648, 885443715538058477568, 3929008913747544817795072, 34662321099990647697175478272, 608472288109550112718417538580480, 21267647932558653966460912964485513216
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2004

Keywords

Comments

Number of perfect matchings of an n X (n+1) Aztec rectangle with the second vertex in the topmost row removed.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7

Crossrefs

Programs

  • Magma
    [n*2^((n^2-n) div 2): n in [1..20]]; // Vincenzo Librandi, Aug 17 2015
  • Maple
    a:= n-> n*2^(n*(n-1)/2):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 20}]; a = Drop[Range[0, 20]! CoefficientList[Series[Log[g] + 1, {x, 0, 20}], x], 1]; Table[Sum[k Binomial[n, k] 2^Binomial[n - k, 2] a[[k]], {k, 1, n}], {n, 1,20}] (* Geoffrey Critzer, Nov 12 2011 *)
  • PARI
    a(n)=n*2^((n^2-n)/2)
    

Formula

a(n) = n * A006125(n).
a(n) = n * 2^(n*(n-1)/2). E.g., a(7) = 7 * 2^(7*6/2) = 7 * 2097152 = 14680064. - David Terr, Nov 08 2004
a(n) = (32*a(n-1)*a(n-3)-48*a(n-2)^2)/a(n-4). - Michael Somos, Sep 16 2005
a(n) = Sum_{k=1..n} k*C(n,k)*2^C(n-k,2)*A001187(k). The sum gives the number of rooted labeled simple graphs on n nodes. It conditions on k, 1<=k<=n, the size of the connected component that the root is in. See Harary and Palmer reference. - Geoffrey Critzer, Nov 12 2011

Extensions

Edited by Ralf Stephan, Feb 21 2005

A038094 Number of rooted graphs on n labeled nodes where the root has degree 2.

Original entry on oeis.org

6, 96, 1920, 61440, 3440640, 352321536, 67645734912, 24739011624960, 17416264183971840, 23779006032516218880, 63309225660971181146112, 330036748754793764694786048, 3379576307249088150474609131520
Offset: 3

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Magma
    [n*Binomial(n-1, 2)*2^Binomial(n-1, 2): n in [3..20]]; // Vincenzo Librandi, Mar 29 2014
    
  • Mathematica
    Table[n*Binomial[n-1, 2]*2^Binomial[n-1, 2], {n, 3, 20}] (* Vaclav Kotesovec, Mar 29 2014 *)
  • PARI
    a(n) = {n * binomial(n-1, 2) * 2^binomial(n-1, 2)} \\ Andrew Howroyd, Nov 23 2020

Formula

a(n) = n * binomial(n-1, 2) * 2^binomial(n-1, 2).
a(n) = n * A103904(n-1) for n >= 3. - Andrew Howroyd, Nov 23 2020

A365638 Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
Offset: 0

Views

Author

Thomas Scheuerle, Sep 14 2023

Keywords

Comments

A tournament is a directed digraph obtained by assigning a direction for each edge in an undirected complete graph. In a transitive tournament all nodes can be strictly ordered by their reachability.

Examples

			Triangle begins:
     1
     1,     1
     2,     4,     2
     8,    24,    24,     6
    64,   256,   384,   192,    24
  1024,  5120, 10240,  7680,  1920,  120
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!:
    seq(seq(T(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Nov 02 2023
  • PARI
    T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))

Formula

T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2)).
T(n, 0) = A006125(n).
T(n, 1) = A095340(n).
T(n, 2) = A103904(n).
T(n, n) = n!.
T(n, n-1) = A002866(n-1).
T(n, n-2) = A052670(n).
T(n, k) = A008279(n, k) * A117260(n, k). - Peter Luschny, Dec 31 2024
Showing 1-4 of 4 results.