cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303831 Birooted graphs: number of unlabeled connected graphs with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 1, 3, 16, 98, 879, 11260, 230505, 7949596, 483572280, 53011686200, 10589943940654, 3880959679322754, 2623201177625659987, 3286005731275218388682, 7663042204550840483139108, 33407704152242477510352455230, 273327599183687887638526170380380
Offset: 1

Views

Author

Brendan McKay, May 01 2018

Keywords

Crossrefs

Cf. A303829 (not necessarily connected). 3rd column of A304311.
Cf. A000088 (not rooted), A126100 (connected single root), A053506 (2 roots adjacent).

Programs

  • Mathematica
    (* See the links section. *)

Formula

G.f.: B(x)/G(x) - (C(x^2) + C(x)^2)/2 where B(x) is the g.f. of A303829, G(x) is the g.f. of A000088 and C(x) is the g.f. of A126100. - Andrew Howroyd, May 03 2018
a(n) = A303830(n) + A304071(n). - Brendan McKay, May 05 2018

Extensions

a(12)-a(18) from Andrew Howroyd, May 03 2018

A304311 Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
Offset: 0

Views

Author

R. J. Mathar, May 10 2018

Keywords

Examples

			Triangle begins
      1;
      1,     1;
      1,     1,      1;
      2,     3,      3,      2;
      6,    11,     16,     11,      6;
     21,    58,     98,     98,     58,     21;
    112,   407,    879,   1087,    879,    407,    112;
    853,  4306,  11260,  17578,  17578,  11260,   4306,   853;
  11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
		

Crossrefs

Cf. A054921 (row sums), A001349 (1st column), A126100 (2nd column), A303831 (3rd column), A294783 (trees).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    S(n,y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1,#p,1+y^p[i])); s/n!}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
    {my(A=InvEulerMT(vector(10, n, S(n,y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n,A[n],1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018

Formula

T(n,k) = T(n,n-k).

A339039 Number of unlabeled connected simple graphs with n edges rooted at one distinguished vertex.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 114, 367, 1248, 4446, 16526, 63914, 256642, 1067388, 4590201, 20376849, 93240065, 439190047, 2126970482, 10579017047, 53983000003, 282345671127, 1512273916781, 8287870474339, 46438619162441, 265840311066579
Offset: 0

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}

Formula

G.f.: f(x)/g(x) where f(x) is the g.f. of A053419 and g(x) is the g.f. of A000664.

A126201 Number of rooted connected unlabeled planar graphs on n nodes.

Original entry on oeis.org

1, 1, 3, 11, 57, 375, 3398, 40043, 585440, 9895493
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Mar 09 2007

Keywords

Comments

Number of "pointed" connected planar graphs on n nodes: number of pairs (G,P) where G is a connected unlabeled planar graph with n nodes and P runs through the orbit representatives of nodes in G under the action of Aut(G).
For n <= 4 this agrees with A126100; a(5) = A126100(5) - 1 = 57, since K_5 is the only excluded graph on 5 nodes.

Crossrefs

Extensions

a(6)-a(10) from Brendan McKay, Mar 10 2007

A126101 Number of connected unlabeled graphs on n nodes that are rooted at a non-cut node.

Original entry on oeis.org

1, 1, 1, 2, 8, 44, 333, 3771, 67141, 2027119, 108880264, 10682138680, 1933264826485, 648235902085512, 404043306773404163, 469727521267710406698, 1022090075330054063050850, 4176738163895992397728030132, 32159402671814249205978139454278, 467987765188007308268883267776373304
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Mar 06 2007

Keywords

Comments

Same as A126100 except that the root node may not be a cut node, i.e., a node whose removal would disconnect the graph.

Crossrefs

Programs

  • PARI
    \\ See A126100 for g; InvEulerT takes inverse Euler transform.
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    seq(n)={concat([1, 1], InvEulerT(Vec(-1+Ser(vector(n, n, g(n-1, 1)))/Ser(vector(n, n, g(n-1, 0))))))} \\ Andrew Howroyd, Nov 23 2020

Extensions

a(6)-a(10) computed by Gordon F. Royle, Mar 05 2007
a(11)-a(19) computed by David Applegate from A126100, Mar 07 2007
a(15)-a(18) corrected and terms a(20) and beyond from Andrew Howroyd, Nov 23 2020
Showing 1-5 of 5 results.