cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303833 Birooted trees: number of unlabeled trees with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 1, 2, 6, 15, 43, 116, 329, 918, 2609, 7391, 21099, 60248, 172683, 495509, 1424937, 4102693, 11830006, 34148859, 98686001, 285459772, 826473782, 2394774727, 6944343654, 20151175658, 58513084011, 170007600051, 494230862633
Offset: 1

Views

Author

R. J. Mathar, Brendan McKay, May 01 2018

Keywords

Crossrefs

Subsets of graphs in A303831. Cf. A000243 (distinguishable roots), A000055 (not rooted).
Third column of A294783.

Programs

  • Maple
    a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597] ;
    g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
    g := 0 ;
    nmax := nops(a000081) ;
    for m from 0 to nmax do
        mhalf := floor(m/2) ;
        ghalf := g81^(mhalf+1) ;
        gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
        if type(m,odd) then
            gcyc := gcyc*g81 ;
        end if;
        g := g+gcyc ;
    end do:
    taylor(g,x=0,nmax) ;
    gfun[seriestolist](%) ; # R. J. Mathar, May 01 2018
  • PARI
    TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2)+O(x*x^n)); Vec((2*t^2-1)/(1-t) + (1+t)/(1-t2), -n)/2} \\ Andrew Howroyd, Dec 04 2020

Formula

G.f.: [g81(x)^2/{1-g81(x)} +(1+g81(x))*g81(x^2)/{1-g81(x^2)}] /2 = [ g243(x) +(1+g81(x))*g107(x^2)]/2, where g81 is the g.f. of A000081, g243 the g.f. of A000243 and g107 the g.f. of A000107. - R. J. Mathar, May 02 2018
a(n) = A027852(n) + A304067(n). - Brendan McKay, May 05 2018
a(n) = A303840(n+2) - A000081(n). - Andrew Howroyd, Dec 04 2020

A339303 Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 9, 6, 6, 2, 1, 20, 16, 15, 8, 3, 1, 48, 37, 41, 22, 12, 3, 1, 115, 96, 106, 69, 38, 15, 4, 1, 286, 239, 284, 194, 124, 52, 20, 4, 1, 719, 622, 750, 564, 377, 189, 77, 24, 5, 1, 1842, 1607, 2010, 1584, 1144, 618, 292, 100, 30, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 04 2020

Keywords

Comments

Linear forests (A339067) are considered up to reversal of the linear order.
T(n,k) is the number of unlabeled trees on n nodes rooted at two indistinguishable nodes at distance k-1 from each other.

Examples

			Triangle read by rows:
    1;
    1,   1;
    2,   1,   1;
    4,   3,   2,   1;
    9,   6,   6,   2,   1;
   20,  16,  15,   8,   3,   1;
   48,  37,  41,  22,  12,   3,  1;
  115,  96, 106,  69,  38,  15,  4,  1;
  286, 239, 284, 194, 124,  52, 20,  4, 1;
  719, 622, 750, 564, 377, 189, 77, 24, 5, 1;
  ...
		

Crossrefs

Columns 1..4 are A000081, A027852, A280788(n-3), A339302.
Row sums are A303840(n+2).
Row sums excluding the first column are A303833.
Cf. A339067.

Programs

  • PARI
    \\ TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f of column k: (r(x)^k + r(x)^(k mod 2)*r(x^2)^floor(k/2))/2 where r(x) is the g.f. of A000081.
Showing 1-2 of 2 results.