A294792 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly three colors under translational symmetry and swappable colors.
0, 0, 3, 1, 18, 345, 2, 136, 7254, 447156, 5, 946, 158355, 29032254, 5647919665, 18, 7324, 3580802, 1961010826, 1143822046786, 694881637942816, 43, 56450, 82968843, 136166703562, 238244961999013, 434202285631866206, 813943290958393433377, 126, 447138, 1960981598, 9651082393912, 50656925726930746, 276966813318877426118, 1557582240509759704455566
Offset: 1
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Marko Riedel et al., Burnside lemma and translational symmetries of the torus.
Crossrefs
Formula
T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=3. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
Comments