cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294811 Let b(n) be the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are triangular numbers (A000217). Then a(n) = b(n)/A010551(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 11, 16, 30, 48, 97, 157, 322, 524, 1077, 1777, 3684, 6157, 12876, 21684, 45520, 77212, 162533, 277608, 585993, 1006784, 2129433, 3677453, 7788711, 13514487, 28654668, 49933938, 105964856, 185377690, 393631445, 691101516, 1468137470
Offset: 0

Views

Author

Keywords

Comments

All terms are positive integers (for a proof, cf. comment in A293984). Note that a(1), a(2), a(3), a(4) remain the same if in the definition the triangular numbers are replaced by k-gonal numbers for k >= 5.

Examples

			Let n=3. For a permutation C={c_1,c_2,c_3}, set s = s(C) = c_1 - c_2 + c_3. We have the permutations:
1,2,3; s=2
1,3,2; s=0
2,1,3; s=4
2,3,1; s=0
3,1,2; s=4
3,2,1; s=2
Here there are 2 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(3) = 2, then a(3) = 1.
Let n=4. For a permutation C={c_1,c_2,c_3,c_4}, set s = s(C) = c_1 - c_2 + c_3 - c_4. We have the permutations:
1,2,3,4; s=-2
1,3,2,4; s=-4
2,1,3,4; s=0
2,3,1,4; s=-4
3,1,2,4; s=0
3,2,1,4; s=-2
1,2,4,3; s=0
1,3,4,2; s=0
2,1,4,3; s=2
2,3,4,1; s=2
3,1,4,2; s=4
3,2,4,1; s=4
1,4,2,3; s=-4
1,4,3,2; s=-2
2,4,1,3; s=-4
2,4,3,1; s=0
3,4,1,2; s=-2
3,4,2,1; s=0
4,1,2,3; s=2
4,1,3,2; s=4
4,2,1,3; s=0
4,2,3,1; s=4
4,3,1,2; s=0
4,3,2,1; s=2
Here there are 8 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(4) = 4, then a(4) = 8/4 = 2.
		

Crossrefs

Programs

  • Maple
    b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(8*s+1), 1, 0),
          `if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m)
        end:
    a:= n-> (t-> b(n-t, t, 0))(iquo(n, 2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 17 2020
  • Mathematica
    polyQ[order_,n_]:=If[n==0,True,IntegerQ[(#-4+Sqrt[(#-4)^2+8 n (#-2)])/(2 (#-2))]&[order]];(*is a number polygonal?*)
    Map[Total,Table[
    possibleSums=Range[1/2-(-1)^n/2-Floor[n/2]^2,Floor[(n+1)/2]^2];
    filteredSums=Select[possibleSums,polyQ[3,#]&&#>-1&];
    positions=Map[Flatten[{#,Position[possibleSums,#,1]-1}]&,filteredSums];
    Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#[[2]]/2}]&,positions],{n,25}]] (* Peter J. C. Moses, Jan 02 2018 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 17 2020