cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294845 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k-1)/2).

Original entry on oeis.org

1, 1, 9, 39, 136, 511, 1785, 6139, 20404, 66406, 211418, 660752, 2030172, 6139231, 18300573, 53823451, 156344596, 448886205, 1274840165, 3583595734, 9976530997, 27520998775, 75262394273, 204130567402, 549318633095, 1467178746342, 3890697051314, 10246833932820, 26809705578787, 69702402930045
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal pyramidal numbers (A002414).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (2 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002414(k).
a(n) ~ exp(-2401 * Pi^16 / (2267481600000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (388800000 * Zeta(5)^2) - Zeta(3)^2 / (400*Zeta(5)) + (343*Pi^12 / (87480000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (18000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (6480000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5)*Zeta(3) / (2^(13/5) * (5*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (1080 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5))) * n^(3/5) + (3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) / 2^(11/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(11/20) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A294839 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(k*(3*k-1)/2)*(1 + x^(2*k))^(k*(3*k+1)/2).

Original entry on oeis.org

1, 1, 2, 7, 13, 30, 61, 125, 250, 494, 960, 1835, 3487, 6520, 12105, 22239, 40515, 73207, 131315, 233831, 413625, 727100, 1270405, 2207243, 3814155, 6557164, 11217391, 19099932, 32375026, 54640509, 91836697, 153739008, 256379360, 425964293, 705197513, 1163452547, 1913096832, 3135609791
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the generalized pentagonal numbers (A001318).

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[(1 + x^(2 k - 1))^(k (3 k - 1)/2) (1 + x^(2 k))^(k (3 k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Ceiling[d/2] Ceiling[(3 d + 1)/2]/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 37}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001318(k).
a(n) ~ exp(Pi*sqrt(2) * 7^(1/4) * n^(3/4) / (3*5^(1/4)) + 9*Zeta(3) * sqrt(5*n/7) / (4*Pi^2) + (7*Pi^6 - 2430*Zeta(3)^2) * (5/7)^(1/4) * n^(1/4) / (336 * sqrt(2) * Pi^5) + 15*Zeta(3)*(3240*Zeta(3)^2 - 7*Pi^6) / (3136*Pi^8)) * 7^(1/8) / (2^(9/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017

A294840 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(k*(5*k-3)/2)*(1 + x^(2*k))^(k*(5*k+3)/2).

Original entry on oeis.org

1, 1, 4, 11, 26, 65, 150, 343, 760, 1670, 3574, 7561, 15752, 32396, 65850, 132386, 263447, 519316, 1014744, 1966234, 3780464, 7215020, 13674227, 25744768, 48166429, 89576421, 165638008, 304615115, 557275053, 1014398476, 1837617957, 3313527482, 5948262037, 10632231253, 18926026208
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the generalized heptagonal numbers (A085787).

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[(1 + x^(2 k - 1))^(k (5 k - 3)/2) (1 + x^(2 k))^(k (5 k + 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (5 d (d + 1)/8 + (-1)^d (2 d + 1)/16 - 1/16), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A085787(k).
a(n) ~ 7^(1/8) * exp(Pi*sqrt(2) * 7^(1/4) * n^(3/4) / 3^(5/4) + 15*Zeta(3) * sqrt(3*n/7) / (4*Pi^2) - (7*Pi^6 + 4050*Zeta(3)^2)*n^(1/4) / (112*sqrt(2) * 3^(3/4) * 7^(1/4) * Pi^5) + 15*Zeta(3) * (7*Pi^6 + 5400*Zeta(3)^2) / (3136*Pi^8)) / (2^(7/3) * 3^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
Showing 1-3 of 3 results.