cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294842 Expansion of Product_{k>=1} (1 + x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 6, 24, 73, 238, 722, 2175, 6343, 18177, 50982, 140671, 382227, 1023623, 2706184, 7067324, 18250671, 46635309, 117997008, 295794098, 735030985, 1811435607, 4429226677, 10749552338, 25903858181, 62000039513, 147435739522, 348431110651, 818549931526, 1912010876019, 4441687009798
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^3 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002411(k).
a(n) ~ exp(-2401 * Pi^16 / (2^12 * 3^11 * 5^8 * Zeta(5)^3) + (343 * Pi^12 / (2^(38/5) * 3^(37/5) * 5^(36/5) * Zeta(5)^(11/5))) * n^(1/5) - (49*Pi^8 / (2^(31/5) * 3^(24/5) * 5^(22/5) * Zeta(5)^(7/5))) * n^(2/5) + (7*Pi^4 / (2^(14/5) * 3^(16/5) * 5^(8/5) * Zeta(5)^(3/5))) * n^(3/5) + (5 * 3^(2/5) * (5*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(167/240) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017