cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294876 a(n) = Product_{d|n, d>1} prime(gcd(d,n/d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 18, 10, 8, 2, 72, 2, 8, 8, 126, 2, 200, 2, 72, 8, 8, 2, 648, 22, 8, 50, 72, 2, 128, 2, 882, 8, 8, 8, 23400, 2, 8, 8, 648, 2, 128, 2, 72, 200, 8, 2, 31752, 34, 968, 8, 72, 2, 5000, 8, 648, 8, 8, 2, 10368, 2, 8, 200, 16758, 8, 128, 2, 72, 8, 128, 2, 2737800, 2, 8, 968, 72, 8, 128, 2, 31752, 1150, 8, 2, 10368, 8, 8, 8, 648, 2, 80000, 8, 72
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Cf. A294877 (rgs-version of this filter).
Cf. also A293442, A293514, A293524.

Programs

  • Mathematica
    A294876[n_] := Product[Prime[GCD[d, n/d]], {d, Rest[Divisors[n]]}];
    Array[A294876, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(gcd(d,n/d)).
Other identities. For all n >= 1:
1+A007814(a(n)) = A034444(n).
1+A056239(a(n)) = A055155(n).
For n > 1, A061395(a(n)) = A000188(n).