cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294949 Numbers m such that there are precisely 17 groups of order m.

Original entry on oeis.org

675, 3267, 3549, 9947, 11475, 12625, 14283, 14749, 15525, 17745, 18875, 19575, 22707, 24353, 31725, 35775, 38759, 39039, 39825, 41209, 43561, 45387, 49735
Offset: 1

Views

Author

Muniru A Asiru, Nov 11 2017

Keywords

Examples

			For m = 675, the 17 groups are C675, C225 x C3, C25 x ((C3 x C3) : C3), C25 x (C9 : C3), (C5 x C5) : C27, C135 x C5, C75 x C3 x C3, C9 x ((C5 x C5) : C3), (C45 x C5) : C3, C3 x ((C5 x C5) : C9), ((C5 x C5) : C9) : C3, (C15 x C15) : C3, C45 x C15, C5 x C5 x ((C3 x C3) : C3), C5 x C5 x (C9 : C3), C3 x C3 x ((C5 x C5) : C3), C15 x C15 x C3 where C means Cyclic group and the symbols x and : mean direct and semidirect products respectively.
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), this sequence (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • Maple
    with(GroupTheory): select(n->NumGroups(n)=17, [$1..150001]); # Muniru A Asiru, Mar 27 2018

Formula

Sequence is { m | A000001(m) = 17 }.

Extensions

More terms from Muniru A Asiru, Nov 17 2017
Incorrect terms removed by Andrew Howroyd, Jan 28 2022