cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294959 Expansion of Product_{k>=1} (1 + x^k)^(k*((k-2)^2+k)/2).

Original entry on oeis.org

1, 1, 2, 8, 23, 64, 160, 397, 968, 2372, 5714, 13617, 32007, 74396, 171222, 390629, 883922, 1984631, 4423528, 9790146, 21524829, 47027558, 102135967, 220565018, 473743833, 1012274948, 2152271718, 4554344649, 9593260912, 20118418061, 42012556671, 87375161720, 181001416773
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2017

Keywords

Comments

Weigh transform of A060354.

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(((i-2)^2+i)*i/2, j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 12 2017
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A060354(k).
a(n) ~ exp(-2401 * Pi^16 / (3499200000000 * Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - 2*Zeta(3)^2 / (25*Zeta(5)) + (-343*Pi^12 / (810000000 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (360000 * 2^(1/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + (3/2)^(1/5) * Zeta(3) / (5*Zeta(5))^(2/5)) * n^(2/5) - (7*Pi^4 / (180 * 2^(4/5) * 3^(1/5) * (5*Zeta(5))^(3/5))) * n^(3/5) + (3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(69/80) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 12 2017