A294968 Decimal expansion of sqrt(7 + 4*sqrt(2))/2.
1, 7, 7, 8, 8, 2, 3, 6, 4, 5, 6, 6, 3, 9, 2, 4, 4, 5, 0, 8, 5, 8, 3, 3, 4, 8, 2, 0, 4, 1, 5, 0, 2, 6, 7, 6, 0, 7, 6, 5, 0, 1, 7, 3, 7, 2, 9, 5, 2, 5, 7, 8, 5, 4, 4, 0, 7, 9, 2, 2, 8, 5, 1, 0, 5, 0, 8, 1, 8, 3, 5, 3, 5, 4, 5, 4, 7, 6, 7, 2, 3, 1, 0, 6, 4, 7, 0, 1, 9, 7, 1, 1, 0, 7, 9, 9, 9, 5
Offset: 1
Examples
1.778823645663924450858334820415026760765017372952578...
References
- Martin Gardner, Logic Machines and Diagrams, Second Ed., 1982, The Harvester Press, p. 26, Figure 15.
- W. W. Rouse Ball, H. S. M. Coxeter, Mathematical recreations and essays, New York, Dover, 13th ed., 1987, pp. 139-140 (Mrs. Stott's Construction), fig. 3.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Alicia Boole Stott, Geometrical deduction of semiregular from regular polytopes and space fillings. In: Verhandelingen der Koninklijke Akademie van Wetenschappen, section 1, part 11, nr. 1. Amsterdam, Müller 1910, pp. 3-24.
- Wolfdieter Lang, Some poor approximation of sqrt(Pi).
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(7+4*Sqrt(2))/2; // G. C. Greubel, Sep 30 2018
-
Mathematica
RealDigits[Sqrt[7 + 4*Sqrt[2]]/2, 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
-
PARI
sqrt(7+4*sqrt(2))/2 \\ Felix Fröhlich, Nov 16 2017
Comments