A295336 Numerators of the convergents to sqrt(14)/2 = A294969.
1, 2, 13, 15, 43, 58, 391, 449, 1289, 1738, 11717, 13455, 38627, 52082, 351119, 403201, 1157521, 1560722, 10521853, 12082575, 34687003, 46769578, 315304471, 362074049, 1039452569, 1401526618, 9448612277, 10850138895
Offset: 0
Examples
The convergents a(n)/A295337(n) begin: 1, 2, 13/7, 15/8, 43/23, 58/31, 391/209, 449/240, 1289/689, 1738/929, 11717/6263, 13455/7192, 38627/20647, 52082/27839, 351119/187681, 403201/215520, 1157521/618721, 1560722/834241, ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,30,0,0,0,-1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[14]/2, 50]] (* Vaclav Kotesovec, Nov 29 2017 *) LinearRecurrence[{0,0,0,30,0,0,0,-1},{1,2,13,15,43,58,391,449},50] (* Harvey P. Dale, Apr 11 2022 *)
Formula
G.f.: (1 + 2*x + 13*x^2 + 15*x^3 + 13*x^4 - 2*x^5 + x^6 - x^7)/(1 - 30*x^4 + x^8).
a(n) = 30*a(n-4) - a(n-8), n >= 8, with inputs a(0)..a(7).
Comments