A294978 Coefficients in expansion of (E_4/E_2^4)^(1/8).
1, 42, -2268, 395304, -64600914, 11644170552, -2188350306072, 424652412357696, -84326944950450972, 17044476557469661986, -3493525880987663047128, 724189608821718233434296, -151528575864988356484968840, 31955212589107172812017247992
Offset: 0
Keywords
Programs
-
Mathematica
terms = 14; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; (E4[x]/E2[x]^4)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Formula
Convolution inverse of A294974.
G.f.: Product_{n>=1} (1-q^n)^(-A294626(n)).
a(n) ~ -(-1)^n * Pi^(5/4) * exp(Pi*sqrt(3)*n) / (2^(19/8) * 3^(9/8) * Gamma(2/3)^(9/4) * Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Jun 03 2018
Comments