cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295009 Numbers k such that the largest digit of k^2 is 9.

Original entry on oeis.org

3, 7, 13, 14, 17, 23, 27, 30, 31, 33, 36, 37, 43, 44, 47, 53, 54, 57, 63, 64, 67, 70, 73, 77, 83, 86, 87, 89, 93, 95, 96, 97, 98, 99, 103, 107, 113, 114, 117, 118, 123, 127, 130, 133, 134, 136, 137, 138, 139, 140, 141, 143, 147, 148, 153, 157, 158, 161, 163, 164, 167, 170, 171
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			23 is in this sequence because 23^2 = 529 has 9 as largest digit.
		

Crossrefs

Cf. A295019 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295005 .. A295008 (same for digit 5 .. 8).
Cf. A000290 (the squares).

Programs

  • PARI
    select( is_A295009(n)=n&&vecmax(digits(n^2))==9 , [0..999]) \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = sqrt(A295019(n)), where sqrt = A000196 or A000194 or A003059.

A295018 Squares whose largest digit is 8.

Original entry on oeis.org

81, 484, 784, 841, 1681, 3481, 3844, 5184, 6084, 8100, 8281, 8464, 8836, 10816, 11881, 14884, 15876, 16384, 18225, 22801, 25281, 28224, 28561, 31684, 33856, 36481, 36864, 38025, 38416, 40804, 43681, 48400, 48841, 53824, 58081, 58564, 67081, 68121, 68644, 71824, 77284, 77841, 78400
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295008 (square roots of the terms), A277946 - A277948 (same for digit 2..4), A295015 - A295019 (same for digit 5..9).
Cf. A000290 (the squares).

Programs

  • Maple
    Res:= NULL: count:= 0:
    for n from 1 while count < 50 do
      if max(convert(n^2,base,10))=8 then
        count:= count+1; Res:= Res, n^2;
      fi
    od:
    Res; # Robert Israel, Jul 21 2019
  • Mathematica
    Select[Range[300]^2,Max[IntegerDigits[#]]==8&] (* Harvey P. Dale, Jul 08 2020 *)
  • PARI
    is_A295018(n)=issquare(n)&&n&&vecmax(digits(n))==8 \\ "&&n" avoids an error message for n=0.

Formula

a(n) = A295008(n)^2.

A294998 Numbers n such that the largest digit of n^3 is 8.

Original entry on oeis.org

2, 12, 18, 20, 22, 24, 32, 35, 38, 42, 44, 47, 52, 53, 62, 72, 75, 82, 83, 87, 88, 92, 93, 94, 95, 96, 102, 104, 114, 115, 120, 122, 123, 127, 138, 141, 142, 145, 152, 153, 155, 161, 162, 172, 174, 180, 182, 183, 186, 192, 194, 195, 200, 201, 202, 203, 205, 206, 217, 220, 228, 232, 238, 240, 242, 244, 251
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., without trailing '0'.

Examples

			12 is in the sequence because the largest digit of 12^3 = 1728 is 8.
		

Crossrefs

Cf. A295023 (the corresponding cubes); A278937, A294664, A294665, A294996 .. A294999 (same for digit 3, ..., 9); A295008 (same for squares).
Cf. A000578 (the cubes).

Programs

  • Maple
    filter:= n -> max(convert(n^3,base,10))=8:
    select(filter, [$1..1000]); # Robert Israel, Jul 03 2020
  • Mathematica
    Select[Range[300],Max[IntegerDigits[#^3]]==8&] (* Harvey P. Dale, Aug 21 2019 *)
  • PARI
    for(n=1,500, vecmax(digits(n^3))==8&&print1(n","))
Showing 1-3 of 3 results.