cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A277959 Numbers k such that 2 is the largest decimal digit of k^2.

Original entry on oeis.org

11, 101, 110, 149, 1001, 1010, 1011, 1100, 1101, 1490, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 14499, 14900, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 144990, 149000, 316261
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

The terms > 1 of A058411 can be considered as primitive elements of this sequence, obtained by multiplying those by powers of 10 (cf. formula). These terms of A058411 have at least 2 nonzero digits, and therefore their square has at least one digit 2. - M. F. Hasler, Nov 15 2017

Crossrefs

Cf. A277946 (the squares); A277960, A277961, A295005, ..., A295009 (analog for largest digit 3, 4, 5, ..., 9).
Cf. A058411, A058412 and A058413, ..., A058474. (Similar but no trailing 0's allowed.)
Cf. A136808 and A136809, ..., A137147 for other digit combinations. (Numbers must satisfy the same restriction as their squares.)

Programs

  • Mathematica
    Select[Range[4*10^5], And[#[[2]] > 0, Union@ Take[RotateLeft[#, 2], 7] == {0}] &@ DigitCount[#^2] &] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n))); Vec(L)
    
  • PARI
    A277959(LIM=1e15, L=List(), N=1)={while(LIM>N=next_A058411(N),my(t=N); until(LIMM. F. Hasler, Nov 15 2017

Formula

Equals (A058411 \ {1})*A011557, where A011557 = { 10^k; k >= 0 }. - M. F. Hasler, Nov 16 2017

Extensions

Edited by M. F. Hasler, Nov 16 2017

A137147 Numbers k such that k and k^2 use only the digits 5, 6, 7, 8 and 9.

Original entry on oeis.org

76, 87, 766, 887, 7666, 8887, 9786, 76587, 76666, 87576, 759576, 766666, 869866, 869867, 886886, 888587, 988866, 7666666, 8766867, 8885887, 76587576, 76666666, 76789686, 86998666, 87565786, 87685676, 88766867, 97759786, 97957576, 766666666, 875765766, 886885887, 887579686, 977699687
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.

Examples

			989878759589576^2 = 979859958686597599779967859776.
		

Crossrefs

Cf. A136808, A136809, ..., A137146 for other digit combinations.
Cf. A000290 (the squares); A027675, A058411, ..., A058474 (3-digit combinations).
Cf. A277959, A277960, A277961, A295005, ..., A295009 (squares with largest digit = 2, 3, 4, 5, ..., 9).

A295005 Numbers n such that the largest digit of n^2 is 5.

Original entry on oeis.org

5, 15, 35, 39, 45, 50, 55, 65, 71, 105, 112, 115, 145, 150, 155, 185, 188, 205, 211, 229, 235, 335, 350, 365, 368, 388, 389, 390, 450, 461, 485, 495, 500, 501, 502, 505, 550, 579, 585, 595, 635, 650, 652, 665, 671, 710, 711, 715, 718, 729, 735, 745, 1005, 1015, 1050
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			39 is in this sequence because 39^2 = 1521 has 5 as largest digit.
		

Crossrefs

Cf. A295015 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295006 .. A295009 (same for digit 6 .. 9).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Sqrt[ #]&/@(FromDigits/@Select[Tuples[ Range[ 0,5],7],Max[#] == 5&]),IntegerQ] (* Harvey P. Dale, Sep 23 2021 *)
  • PARI
    select( is_A295005(n)=n&&vecmax(digits(n^2))==5 , [0..999]) \\ The "n&&" avoids an error message for n=0.
    
  • Python
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        if max(str(k*k)) == "5": alst.append(k)
      return alst
    print(aupto(1050)) # Michael S. Branicky, May 15 2021

Formula

a(n) = sqrt(A295015(n)), where sqrt = A000196 or A000194 or A003059.

A295019 Squares whose largest digit is 9.

Original entry on oeis.org

9, 49, 169, 196, 289, 529, 729, 900, 961, 1089, 1296, 1369, 1849, 1936, 2209, 2809, 2916, 3249, 3969, 4096, 4489, 4900, 5329, 5929, 6889, 7396, 7569, 7921, 8649, 9025, 9216, 9409, 9604, 9801, 10609, 11449, 12769, 12996, 13689, 13924, 15129, 16129, 16900, 17689, 17956, 18496, 18769
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295009 (square roots of the terms), A277946 - A277948 (same for digit 2..4), A295015 - A295018 (same for digit 5..8).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[150]^2,Max[IntegerDigits[#]]==9&] (* Harvey P. Dale, Oct 27 2019 *)
  • PARI
    is_A295019(n)=issquare(n)&&n&&vecmax(digits(n))==9 \\ "&&n" avoids an error message for n=0.

Formula

a(n) = A295009(n)^2.

A295006 Numbers n such that the largest digit of n^2 is 6.

Original entry on oeis.org

4, 6, 8, 16, 19, 25, 34, 40, 46, 51, 56, 58, 60, 66, 68, 75, 79, 80, 81, 106, 108, 116, 119, 121, 125, 129, 142, 146, 156, 160, 162, 175, 190, 204, 206, 208, 215, 216, 225, 231, 238, 245, 246, 248, 249, 250, 251, 252, 254, 255, 256, 258, 325, 334, 340, 354, 355, 369, 375, 379
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			19 is in this sequence because 19^2 = 361 has 6 as largest digit.
		

Crossrefs

Cf. A295016 (the corresponding squares), A277959, A277960, A277961, A295005 .. A295009 (analog for digits 2 through 9), A294996 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[400],Max[IntegerDigits[#^2]]==6&] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    select( is_A295006(n)=n&&vecmax(digits(n^2))==6 , [0..999]) \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = sqrt(A295016(n)), where sqrt = A000196 or A000194 or A003059.

A295008 Numbers whose square has largest digit 8.

Original entry on oeis.org

9, 22, 28, 29, 41, 59, 62, 72, 78, 90, 91, 92, 94, 104, 109, 122, 126, 128, 135, 151, 159, 168, 169, 178, 184, 191, 192, 195, 196, 202, 209, 220, 221, 232, 241, 242, 259, 261, 262, 268, 278, 279, 280, 284, 285, 289, 290, 291, 292, 294, 295, 296, 298, 322, 328, 329, 341, 344, 349
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Comments

Includes a*10^n+b for n >= 2 and [a,b] in {[4, 1], [9, 1], [2, 2], [9, 2], [1, 4], [6, 4], [9, 4], [8, 5], [4, 6], [9, 6], [5, 8], [8, 8], [9, 8], [1, 9], [2, 9], [4, 9], [6, 9], [8, 9], [9, 9]}. - Robert Israel, Nov 13 2017

Examples

			28 is in this sequence because 28^2 = 784 has 8 as largest digit.
		

Crossrefs

Cf. A295018 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295005 .. A295009 (same for digit 5 .. 9).
Cf. A000290 (the squares).

Programs

  • Maple
    select(t -> max(convert(t^2,base,10))=8, [$1..1000]); # Robert Israel, Nov 13 2017
  • Mathematica
    Select[Range[400],Max[IntegerDigits[#^2]]==8&] (* Harvey P. Dale, Jun 02 2019 *)
  • PARI
    select( is_A295008(n)=n&&vecmax(digits(n^2))==8 , [0..999]) \\ The "n&&" avoids an error message for n=0.
    
  • Python
    def ok(n): return max(int(d) for d in str(n*n)) == 8
    print(list(filter(ok, range(350)))) # Michael S. Branicky, Sep 22 2021

Formula

a(n) = sqrt(A295018(n)), where sqrt = A000196 or A000194 or A003059.

A322490 Numbers k such that k^k ends with 7.

Original entry on oeis.org

3, 17, 23, 37, 43, 57, 63, 77, 83, 97, 103, 117, 123, 137, 143, 157, 163, 177, 183, 197, 203, 217, 223, 237, 243, 257, 263, 277, 283, 297, 303, 317, 323, 337, 343, 357, 363, 377, 383, 397, 403, 417, 423, 437, 443, 457, 463, 477, 483, 497, 503, 517, 523, 537, 543, 557, 563
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Equivalently, numbers k such that k and (7^h)^k end with the same digit, where h == 1 (mod 4).
Also, numbers k such that k and (3^h)^k end with the same digit, where h == 3 (mod 4).
Numbers congruent to {3, 17} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A063226, A295009.
Similar sequences are listed in A322489.

Programs

  • GAP
    List([1..70], n -> 10*n+2*(-1)^n-5);
    
  • Julia
    [10*n+2*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+2*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=7,[$1..563]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 2 (-1)^n - 5, {n, 1, 60}]
    LinearRecurrence[{1,1,-1},{3,17,23},80] (* Harvey P. Dale, Sep 15 2019 *)
  • Maxima
    makelist(10*n+2*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322490(n)=10*n+2*(-1)^n-5, [1..70])
    
  • PARI
    Vec(x*(3 + 14*x + 3*x^2) / ((1 + x)*(1 - x)^2) + O(x^55)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+2*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+2*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: x*(3 + 14*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 3 + 2*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 2*(-1)^n - 5. Therefore:
a(n) = 10*n - 7 for odd n;
a(n) = 10*n - 3 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(7*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023

A137146 Numbers k such that k and k^2 use only the digits 5, 6, 7 and 8.

Original entry on oeis.org

76, 766, 7666, 76666, 766666, 7666666, 76666666, 766666666, 7666666666, 76666666666, 766666666666, 7666666666666, 76666666666666, 766666666666666, 7666666666666666, 76666666666666666, 766666666666666666, 7666666666666666666, 76666666666666666666, 766666666666666666666
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
The first digit of each term is either 7 or 8 and the last digit is 6. - Chai Wah Wu, May 25 2021

Examples

			766666666666666^2 = 587777777777776755555555555556.
		

Crossrefs

Cf. A000290 (the squares); A136808, A136809, ..., A137147 for other digit combinations.
Cf. A058469 - A058472 and A058411, ..., A058474 for other digit combinations.
Cf. A277959, A277960, A277961, A295005, ..., A295009 (squares with largest digit = 2, 3, 4, 5, ..., 9).

Programs

  • Python
    from itertools import product
    A137146_list = [n for n in (int(''.join(d)) for l in range(1,6) for d in product('5678',repeat=l)) if set(str(n**2)) <= set('5678')] # Chai Wah Wu, May 25 2021

Extensions

a(15)-a(20) from Pontus von Brömssen, Apr 12 2024

A295007 Numbers n such that the largest digit of n^2 is 7.

Original entry on oeis.org

24, 26, 42, 52, 61, 69, 74, 76, 82, 84, 85, 88, 124, 131, 132, 144, 154, 165, 166, 174, 181, 189, 194, 218, 224, 226, 234, 239, 240, 260, 265, 266, 269, 271, 274, 275, 276, 319, 326, 356, 371, 376, 384, 415, 416, 418, 419, 420, 421, 448, 455, 466, 474, 476, 520, 521, 524, 525, 526, 552
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			24 is in this sequence because 24^2 = 576 has 7 as largest digit.
		

Crossrefs

Cf. A295017 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295005 .. A295009 (same for digit 5 .. 9).
Cf. A000290 (the squares).

Programs

  • Maple
    filter:= proc(n) max(convert(n^2,base,10))=7 end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 19 2019
  • PARI
    select( is_A295007(n)=n&&vecmax(digits(n^2))==7 , [0..999]) \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = sqrt(A295017(n)), where sqrt = A000196 or A000194 or A003059.
Showing 1-9 of 9 results.