A295027 T(n,k) is (1/n) times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 2, 34, 36, 24, 0, 9, 150, 330, 240, 120, 0, -6, 938, 2790, 3120, 1800, 720, 0, 118, 5509, 28014, 38220, 31080, 15120, 5040, 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320, 0, 4716, 297648, 3459324, 7877520, 8968680, 6804000, 3840480, 1451520, 362880
Offset: 1
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 2, 6, 6; 0, 2, 34, 36, 24; 0, 9, 150, 330, 240, 120; 0, -6, 938, 2790, 3120, 1800, 720; 0, 118, 5509, 28014, 38220, 31080, 15120, 5040; 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Eric Weisstein's World of Mathematics, Power Tower
- Wikipedia, Knuth's up-arrow notation
- Wikipedia, Tetration
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, (x+1)^f(n-1))) end: T:= (n, k)-> (n-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n): seq(seq(T(n, k), k=1..n), n=1..12); # second Maple program: b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)* (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1))) end: T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/n: seq(seq(T(n, k), k=1..n), n=1..12);
-
Mathematica
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]]; T[n_, k_] := (n - 1)!*SeriesCoefficient[f[k] - f[k - 1], {x, 0, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* second program: *) b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]]; T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]])/n; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
Comments