A104150
Shifted factorial numbers: a(0)=0, a(n) = (n-1)!.
Original entry on oeis.org
0, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 0
- A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19)
Main diagonal of
A295027 (for n > 0).
-
[0] cat [Factorial(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 25 2012
-
Join[{0,1},Range[20]!] (* Harvey P. Dale, Dec 09 2013 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace(-log(1-x)))) \\ G. C. Greubel, May 15 2018
-
[stirling_number1(n,1) for n in range(0, 22)] # Zerinvary Lajos, May 16 2009
A295028
A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 2, 8, 14, 14, 14, 14, 14, ...
0, 2, 36, 72, 96, 96, 96, 96, ...
0, 9, 159, 489, 729, 849, 849, 849, ...
0, -6, 932, 3722, 6842, 8642, 9362, 9362, ...
0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n))/n:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
A[n_, k_] := b[n, Min[k, n]]/n;
Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)
A277536
T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 3, 6, 0, 0, 8, 24, 24, 0, 0, 10, 170, 180, 120, 0, 0, 54, 900, 1980, 1440, 720, 0, 0, -42, 6566, 19530, 21840, 12600, 5040, 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320, 0, 0, -5112, 365256, 2650536, 4818744, 4536000, 2993760, 1270080, 362880
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 3, 6;
0, 0, 8, 24, 24;
0, 0, 10, 170, 180, 120;
0, 0, 54, 900, 1980, 1440, 720;
0, 0, -42, 6566, 19530, 21840, 12600, 5040;
0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;
...
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):
seq(seq(T(n, k), k=0..n), n=0..12);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
A005168
n-th derivative of x^x at 1, divided by n.
Original entry on oeis.org
1, 1, 1, 2, 2, 9, -6, 118, -568, 4716, -38160, 358126, -3662088, 41073096, -500013528, 6573808200, -92840971200, 1402148010528, -22554146644416, 385014881294496, -6952611764874240, 132427188835260480, -2653529921603890560, 55802195178451990896
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
a:= n-> (n-1)! *coeftayl(x^x, x=1, n):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 18 2012
-
Rest[(NestList[ Factor[ D[ #1, x]] &, x^x, 23] /. (x -> 1))/Range[0, 23]] (* Robert G. Wilson v, Aug 10 2010 *)
-
from sympy import var, diff
x = var('x')
y = x**x
l = [[y:=diff(y),y.subs(x,1)/(n+1)][1] for n in range(10)]
print(l) # Nicholas Stefan Georgescu, Mar 02 2023
A136461
Expansion of e.g.f.: A(x) = -(1 + LambertW(-log(1+x))/log(1+x))/x.
Original entry on oeis.org
1, 1, 3, 14, 96, 849, 9362, 123101, 1888016, 33066768, 651883152, 14286514186, 344690210928, 9079702374300, 259327537407416, 7983107543564724, 263518937698466304, 9285770278110061664, 347916420499685643072, 13812127364516107258944, 579183295530010157485824
Offset: 0
Main diagonal of
A295028 (shifted).
-
a:= n-> add(Stirling1(n+1, k)*(k+1)^(k-1), k=0..n+1)/(n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 21 2016
-
CoefficientList[Series[-(1+LambertW[-Log[1+x]]/Log[1+x])/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
-
{a(n)=n!*polcoeff(sum(i=0,n+1,(i+1)^(i-1)*log(1+x +O(x^(n+2) ))^i/i!), n+1)}
-
x='x+O('x^30); Vec(serlaplace(-(1+lambertw(-log(1+x))/log(1+x))/x )) \\ G. C. Greubel, Feb 19 2018
A298605
T(n,k) is 1/(k-1)! times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 10, 85, 30, 5, 0, 54, 450, 330, 60, 6, 0, -42, 3283, 3255, 910, 105, 7, 0, 944, 22036, 37352, 12740, 2072, 168, 8, 0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9, 0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10
Offset: 1
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 3;
0, 8, 12, 4;
0, 10, 85, 30, 5;
0, 54, 450, 330, 60, 6;
0, -42, 3283, 3255, 910, 105, 7;
0, 944, 22036, 37352, 12740, 2072, 168, 8;
0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9;
0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10;
...
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!/(k-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..10);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!/(k - 1)!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten
(* Second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n-1, j]* b[j, k]*Sum[Binomial[n - j, i]* (-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k-1, n]]])/(k-1)!;
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
Showing 1-6 of 6 results.
Comments