A005727
n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.
Original entry on oeis.org
1, 1, 2, 3, 8, 10, 54, -42, 944, -5112, 47160, -419760, 4297512, -47607144, 575023344, -7500202920, 105180931200, -1578296510400, 25238664189504, -428528786243904, 7700297625889920, -146004847062359040, 2913398154375730560, -61031188196889482880
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, table at foot of page.
- G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..400 (first 101 terms from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), section 36.5, "The function x^x"
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y=xxy=x^x, Rocky Mountain J. Math. 26(2) 1996.
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- G. H. Hardy, A Course of Pure Mathematics, Cambridge, The University Press, 1908.
- D. H. Lehmer, Numbers associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, p. 461.
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
A005727 := proc(n) option remember; `if`(n=0, 1, A005727(n-1)+add((-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*A005727(k), k=0..n-2)) end:
seq(A005727(n), n=0..23); # Mélika Tebni, May 22 2022
-
NestList[ Factor[ D[ #1, x ] ]&, x^x, n ] /. (x->1)
Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
-
a(n)=if(n<0,0,n!*polcoeff((1+x+x*O(x^n))^(1+x),n))
A295028
A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 2, 8, 14, 14, 14, 14, 14, ...
0, 2, 36, 72, 96, 96, 96, 96, ...
0, 9, 159, 489, 729, 849, 849, 849, ...
0, -6, 932, 3722, 6842, 8642, 9362, 9362, ...
0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n))/n:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
A[n_, k_] := b[n, Min[k, n]]/n;
Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)
A295027
T(n,k) is (1/n) times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 2, 34, 36, 24, 0, 9, 150, 330, 240, 120, 0, -6, 938, 2790, 3120, 1800, 720, 0, 118, 5509, 28014, 38220, 31080, 15120, 5040, 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320, 0, 4716, 297648, 3459324, 7877520, 8968680, 6804000, 3840480, 1451520, 362880
Offset: 1
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 2, 34, 36, 24;
0, 9, 150, 330, 240, 120;
0, -6, 938, 2790, 3120, 1800, 720;
0, 118, 5509, 28014, 38220, 31080, 15120, 5040;
0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320;
...
Main diagonal gives
A104150 (for n>0).
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> (n-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/n:
seq(seq(T(n, k), k=1..n), n=1..12);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := (n - 1)!*SeriesCoefficient[f[k] - f[k - 1], {x, 0, n}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]])/n;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
Showing 1-3 of 3 results.
Comments