cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005727 n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 54, -42, 944, -5112, 47160, -419760, 4297512, -47607144, 575023344, -7500202920, 105180931200, -1578296510400, 25238664189504, -428528786243904, 7700297625889920, -146004847062359040, 2913398154375730560, -61031188196889482880
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, table at foot of page.
  • G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A008296. Column k=2 of A215703 and of A277537.

Programs

  • Maple
    A005727 := proc(n) option remember; `if`(n=0, 1, A005727(n-1)+add((-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*A005727(k), k=0..n-2)) end:
    seq(A005727(n), n=0..23); # Mélika Tebni, May 22 2022
  • Mathematica
    NestList[ Factor[ D[ #1, x ] ]&, x^x, n ] /. (x->1)
    Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff((1+x+x*O(x^n))^(1+x),n))

Formula

For n>0, a(n) = Sum_{k=0..n} b(n, k), where b(n, k) is a Lehmer-Comtet number of the first kind (see A008296).
E.g.f.: (1+x)^(1+x). a(n) = Sum_{k=0..n} Stirling1(n, k)*A000248(k). - Vladeta Jovovic, Oct 02 2003
From Mélika Tebni, May 22 2022: (Start)
a(0) = 1, a(n) = a(n-1)+Sum_{k=0..n-2} (-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*a(k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*A293297(k)*binomial(n, k).
a(n) = Sum_{k=0..n} (-1)^k*A203852(k)*binomial(n, k). (End)

A295028 A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1

Views

Author

Alois P. Heinz, Nov 12 2017

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    3,     3,     3,      3,      3,      3, ...
  0,   2,    8,    14,    14,     14,     14,     14, ...
  0,   2,   36,    72,    96,     96,     96,     96, ...
  0,   9,  159,   489,   729,    849,    849,    849, ...
  0,  -6,  932,  3722,  6842,   8642,   9362,   9362, ...
  0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
		

Crossrefs

Main diagonal gives A136461(n-1).

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
          -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
          (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
        end:
    A:= (n, k)-> b(n, min(k, n))/n:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
    A[n_, k_] := b[n, Min[k, n]]/n;
    Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)

Formula

A(n,k) = 1/n * [(d/dx)^n x^^k]_{x=1}.
A(n,k) = (n-1)! * [x^n] (x+1)^^k.
A(n,k) = Sum_{i=0..min(n,k)} A295027(n,i).
A(n,k) = 1/n * A277537(n,k).

A295027 T(n,k) is (1/n) times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 2, 34, 36, 24, 0, 9, 150, 330, 240, 120, 0, -6, 938, 2790, 3120, 1800, 720, 0, 118, 5509, 28014, 38220, 31080, 15120, 5040, 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320, 0, 4716, 297648, 3459324, 7877520, 8968680, 6804000, 3840480, 1451520, 362880
Offset: 1

Views

Author

Alois P. Heinz, Nov 12 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 1. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     2;
  0,    2,     6,      6;
  0,    2,    34,     36,     24;
  0,    9,   150,    330,    240,    120;
  0,   -6,   938,   2790,   3120,   1800,    720;
  0,  118,  5509,  28014,  38220,  31080,  15120,   5040;
  0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320;
  ...
		

Crossrefs

Column k=2 gives A005168 for n>1.
Row sums give A136461(n-1).
Main diagonal gives A104150 (for n>0).

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<0, 0,
          `if`(n=0, 1, (x+1)^f(n-1)))
        end:
    T:= (n, k)-> (n-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..12);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
          -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
          (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
        end:
    T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/n:
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
    T[n_, k_] := (n - 1)!*SeriesCoefficient[f[k] - f[k - 1], {x, 0, n}];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten
    (* second program: *)
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
    T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]])/n;
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)

Formula

T(n,k) = (n-1)! * [x^n] ((x+1)^^k - (x+1)^^(k-1)).
T(n,k) = 1/n * [(d/dx)^n (x^^k - x^^(k-1))]_{x=1}.
T(n,k) = A295028(n,k) - A295028(n,k-1).
T(n,k) = 1/n * A277536(n,k).
T(n+1,n) = A001286(n).
Showing 1-3 of 3 results.