A277537
A(n,k) is the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 9, 8, 0, 0, 1, 1, 2, 9, 32, 10, 0, 0, 1, 1, 2, 9, 56, 180, 54, 0, 0, 1, 1, 2, 9, 56, 360, 954, -42, 0, 0, 1, 1, 2, 9, 56, 480, 2934, 6524, 944, 0, 0, 1, 1, 2, 9, 56, 480, 4374, 26054, 45016, -5112, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 0, 3, 9, 9, 9, 9, 9, ...
0, 0, 8, 32, 56, 56, 56, 56, ...
0, 0, 10, 180, 360, 480, 480, 480, ...
0, 0, 54, 954, 2934, 4374, 5094, 5094, ...
0, 0, -42, 6524, 26054, 47894, 60494, 65534, ...
Columns k=0..10 give
A000007,
A019590(n+1),
A005727,
A179230,
A179405,
A179505,
A211205,
A277538,
A277539,
A277540,
A277541.
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> n!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_] := b[n, k] = If[n==0, 1, If[k==0, 0, -Sum[Binomial[n-1, j]*b[j, k]*Sum[Binomial[n-j, i]*(-1)^i*b[n-j-i, k-1]*(i-1)!, {i, 1, n-j}], {j, 0, n-1}]]]; A[n_, k_] := b[n, Min[k, n]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, adapted from 2nd Maple prog. *)
A295027
T(n,k) is (1/n) times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 2, 34, 36, 24, 0, 9, 150, 330, 240, 120, 0, -6, 938, 2790, 3120, 1800, 720, 0, 118, 5509, 28014, 38220, 31080, 15120, 5040, 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320, 0, 4716, 297648, 3459324, 7877520, 8968680, 6804000, 3840480, 1451520, 362880
Offset: 1
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 2, 34, 36, 24;
0, 9, 150, 330, 240, 120;
0, -6, 938, 2790, 3120, 1800, 720;
0, 118, 5509, 28014, 38220, 31080, 15120, 5040;
0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320;
...
Main diagonal gives
A104150 (for n>0).
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> (n-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/n:
seq(seq(T(n, k), k=1..n), n=1..12);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := (n - 1)!*SeriesCoefficient[f[k] - f[k - 1], {x, 0, n}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]])/n;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
A005168
n-th derivative of x^x at 1, divided by n.
Original entry on oeis.org
1, 1, 1, 2, 2, 9, -6, 118, -568, 4716, -38160, 358126, -3662088, 41073096, -500013528, 6573808200, -92840971200, 1402148010528, -22554146644416, 385014881294496, -6952611764874240, 132427188835260480, -2653529921603890560, 55802195178451990896
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
a:= n-> (n-1)! *coeftayl(x^x, x=1, n):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 18 2012
-
Rest[(NestList[ Factor[ D[ #1, x]] &, x^x, 23] /. (x -> 1))/Range[0, 23]] (* Robert G. Wilson v, Aug 10 2010 *)
-
from sympy import var, diff
x = var('x')
y = x**x
l = [[y:=diff(y),y.subs(x,1)/(n+1)][1] for n in range(10)]
print(l) # Nicholas Stefan Georgescu, Mar 02 2023
A136461
Expansion of e.g.f.: A(x) = -(1 + LambertW(-log(1+x))/log(1+x))/x.
Original entry on oeis.org
1, 1, 3, 14, 96, 849, 9362, 123101, 1888016, 33066768, 651883152, 14286514186, 344690210928, 9079702374300, 259327537407416, 7983107543564724, 263518937698466304, 9285770278110061664, 347916420499685643072, 13812127364516107258944, 579183295530010157485824
Offset: 0
Main diagonal of
A295028 (shifted).
-
a:= n-> add(Stirling1(n+1, k)*(k+1)^(k-1), k=0..n+1)/(n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 21 2016
-
CoefficientList[Series[-(1+LambertW[-Log[1+x]]/Log[1+x])/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
-
{a(n)=n!*polcoeff(sum(i=0,n+1,(i+1)^(i-1)*log(1+x +O(x^(n+2) ))^i/i!), n+1)}
-
x='x+O('x^30); Vec(serlaplace(-(1+lambertw(-log(1+x))/log(1+x))/x )) \\ G. C. Greubel, Feb 19 2018
A295103
a(n) = (1/n) times the n-th derivative of the third tetration of x (power tower of order 3) x^^3 at x=1.
Original entry on oeis.org
1, 1, 3, 8, 36, 159, 932, 5627, 40016, 302364, 2510712, 22623490, 213486864, 2227719948, 23388469400, 277570328040, 3182959484736, 42530335589088, 523078873327872, 7846745537655360, 101370634558327680, 1717052148685665792, 22657314273376353408
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(3), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[3], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
A295104
a(n) = (1/n) times the n-th derivative of the fourth tetration of x (power tower of order 4) x^^4 at x=1.
Original entry on oeis.org
1, 1, 3, 14, 72, 489, 3722, 33641, 334520, 3761688, 45898272, 615641806, 8863726704, 137786878644, 2279658872696, 40229212948404, 750433323448128, 14801457167223872, 306869893647304896, 6683254543551623904, 152281219079726183040, 3626445842114839589952
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(4), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[4], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
A295105
a(n) = (1/n) times the n-th derivative of the fifth tetration of x (power tower of order 5) x^^5 at x=1.
Original entry on oeis.org
1, 1, 3, 14, 96, 729, 6842, 71861, 869936, 11639208, 172823592, 2797075786, 49197117648, 931938081060, 18931744650296, 410210251648404, 9443418462484224, 230108297407058144, 5915598580747789632, 159987606074180375904, 4539874767394840811904
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(5), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[5], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
A295106
a(n) = (1/n) times the n-th derivative of the sixth tetration of x (power tower of order 6) x^^6 at x=1.
Original entry on oeis.org
1, 1, 3, 14, 96, 849, 8642, 102941, 1373936, 20607888, 340516992, 6173590906, 121502258688, 2583247609500, 58940269686776, 1437019737587004, 37267502536335744, 1024420897710717344, 29745405670928179392, 909702365350759274304, 29224500667382460549504
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(6), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[6], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
A295107
a(n) = (1/n) times the n-th derivative of the seventh tetration of x (power tower of order 7) x^^7 at x=1.
Original entry on oeis.org
1, 1, 3, 14, 96, 849, 9362, 118061, 1706576, 27411888, 488133552, 9504647866, 201394553808, 4607546125740, 113271179680136, 2976610819616004, 83276079152315904, 2470817772641667104, 77492234876034762432, 2561350116102926727744, 88984716683633511515904
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(7), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[7], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
A295108
a(n) = (1/n) times the n-th derivative of the eighth tetration of x (power tower of order 8) x^^8 at x=1.
Original entry on oeis.org
1, 1, 3, 14, 96, 849, 9362, 123101, 1847696, 31252368, 584145552, 11981318986, 267050704368, 6432872588700, 166461202886456, 4606491806670324, 135733988375074944, 4243153626928512224, 140252989224067186752, 4887395830953148166784, 179067423776388634331904
Offset: 1
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
a:= n-> (n-1)!*coeff(series(f(8), x, n+1), x, n):
seq(a(n), n=1..23);
-
f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
a[n_] := (n - 1)!*SeriesCoefficient[f[8], {x, 0, n}];
Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)
Showing 1-10 of 12 results.
Comments