A179230
n-th derivative of x^(x^x) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 32, 180, 954, 6524, 45016, 360144, 3023640, 27617832, 271481880, 2775329232, 31188079272, 350827041000, 4441125248640, 54110311240512, 765546040603584, 9938498593229568, 156934910753107200, 2128783325724881280, 37775147271084647424
Offset: 0
Henryk Trappmann (bo198214(AT)gmail.com), Jul 03 2010
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^x) ), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 20 2012
-
Table[ D[ x^(x^x), {x, n}] /. x -> 1, {n, 0, 20}] (* Robert G. Wilson v, Jul 12 2010 *)
NestList[ Factor[ D[ #1, x]] &, x^x^x, 20] /. x -> 1 (* Robert G. Wilson v, Aug 10 2010 *)
Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
A295028
A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 2, 8, 14, 14, 14, 14, 14, ...
0, 2, 36, 72, 96, 96, 96, 96, ...
0, 9, 159, 489, 729, 849, 849, 849, ...
0, -6, 932, 3722, 6842, 8642, 9362, 9362, ...
0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n))/n:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
A[n_, k_] := b[n, Min[k, n]]/n;
Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)
Showing 1-2 of 2 results.
Comments