cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179230 n-th derivative of x^(x^x) at x=1.

Original entry on oeis.org

1, 1, 2, 9, 32, 180, 954, 6524, 45016, 360144, 3023640, 27617832, 271481880, 2775329232, 31188079272, 350827041000, 4441125248640, 54110311240512, 765546040603584, 9938498593229568, 156934910753107200, 2128783325724881280, 37775147271084647424
Offset: 0

Views

Author

Henryk Trappmann (bo198214(AT)gmail.com), Jul 03 2010

Keywords

Comments

First term < 0: a(33) = -868875490363254484795699722301440.

Crossrefs

Cf. A005727. Column k=4 of A215703. Column k=3 of A277537.
Cf. A295103.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^(x^x) ), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 20 2012
  • Mathematica
    Table[ D[ x^(x^x), {x, n}] /. x -> 1, {n, 0, 20}] (* Robert G. Wilson v, Jul 12 2010 *)
    NestList[ Factor[ D[ #1, x]] &, x^x^x, 20] /. x -> 1 (* Robert G. Wilson v, Aug 10 2010 *)
    Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)

Formula

E.g.f.: (x+1)^((x+1)^(x+1)). - Alois P. Heinz, Aug 21 2012

Extensions

a(21)-a(22) from Alois P. Heinz, Aug 20 2012

A295028 A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1

Views

Author

Alois P. Heinz, Nov 12 2017

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    3,     3,     3,      3,      3,      3, ...
  0,   2,    8,    14,    14,     14,     14,     14, ...
  0,   2,   36,    72,    96,     96,     96,     96, ...
  0,   9,  159,   489,   729,    849,    849,    849, ...
  0,  -6,  932,  3722,  6842,   8642,   9362,   9362, ...
  0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
		

Crossrefs

Main diagonal gives A136461(n-1).

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
          -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
          (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
        end:
    A:= (n, k)-> b(n, min(k, n))/n:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
    A[n_, k_] := b[n, Min[k, n]]/n;
    Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)

Formula

A(n,k) = 1/n * [(d/dx)^n x^^k]_{x=1}.
A(n,k) = (n-1)! * [x^n] (x+1)^^k.
A(n,k) = Sum_{i=0..min(n,k)} A295027(n,i).
A(n,k) = 1/n * A277537(n,k).
Showing 1-2 of 2 results.