A005728
Number of fractions in Farey series of order n.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 19, 23, 29, 33, 43, 47, 59, 65, 73, 81, 97, 103, 121, 129, 141, 151, 173, 181, 201, 213, 231, 243, 271, 279, 309, 325, 345, 361, 385, 397, 433, 451, 475, 491, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 883, 901, 941, 965
Offset: 0
a(5)=11 because the fractions are 0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1.
- Martin Gardner, The Last Recreations, 1997, chapter 12.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, a foundation for computer science, Chapter 4.5 - Relative Primality, pages 118 - 120 and Chapter 9 - Asymptotics, Problem 6, pages 448 - 449, Addison-Wesley Publishing Co., Reading, Mass., 1989.
- William Judson LeVeque, Topics in Number Theory, Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
- Andrey O. Matveev, Farey Sequences, De Gruyter, 2017, Table 1.7.
- Leo Moser, Solution to Problem P42, Canadian Mathematical Bulletin, Vol. 5, No. 3 (1962), pp. 312-313.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Antoine Mathys, Table of n, a(n) for n = 0..20000 (terms 0 to 1000 from T. D. Noe)
- Richard K. Guy, Letter to N. J. A. Sloane, 1986.
- Richard K. Guy, Letter to N. J. A. Sloane, 1987.
- Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly, Vol. 95, No. 8 (1988), pp. 697-712.
- Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly, Vol. 95, No. 8 (1988), pp. 697-712. [Annotated scanned copy]
- Brady Haran and Grant Sanderson, Prime Pyramid (with 3Blue1Brown), Numberphile video (2022).
- Sameen Ahmed Khan, Mathematica notebook.
- Sameen Ahmed Khan, How Many Equivalent Resistances?, RESONANCE, May 2012.
- Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 122, No. 2 (May 2012), pp. 153-162.
- Sameen Ahmed Khan, Beginning to count the number of equivalent resistances, Indian Journal of Science and Technology, Vol. 9, No. 44 (2016), pp. 1-7.
- Andrey O. Matveev, Farey Sequences: Errata + Haskell code
- Shmuel Schreiber and N. J. A. Sloane, Correspondence, 1980.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021. (Includes this sequence)
- Vladimir Sukhoy and Alexander Stoytchev, Numerical error analysis of the ICZT algorithm for chirp contours on the unit circle, Scientific Reports, Vol. 10, Article No. 4852 (2020).
- Vladimir Sukhoy and Alexander Stoytchev, Formulas and algorithms for the length of a Farey sequence, Scientific Reports, Vol. 11 (2021), Article No. 22218.
- Eric Weisstein's World of Mathematics, Farey Sequence.
- Wikipedia, Farey sequence.
-
List([0..60],n->Sum([1..n],i->Phi(i)))+1; # Muniru A Asiru, Jul 31 2018
-
a005728 n = a005728_list
a005728_list = scanl (+) 1 a000010_list
-- Reinhard Zumkeller, Aug 04 2012
-
[1] cat [n le 1 select 2 else Self(n-1)+EulerPhi(n): n in [1..60]]; // Vincenzo Librandi, Sep 27 2015
-
A005728 := proc(n)
1+add(numtheory[phi](i),i=1..n) ;
end proc:
seq(A005728(n),n=0..80) ; # R. J. Mathar, Nov 29 2017
-
Accumulate@ Array[ EulerPhi, 54, 0] + 1
f[n_] := 1 + Sum[ EulerPhi[m], {m, n}]; Array[f, 55, 0] (* or *)
f[n_] := (Sum[ MoebiusMu[m] Floor[n/m]^2, {m, n}] + 3)/2; f[0] = 1; Array[f, 55, 0] (* or *)
f[n_] := n (n + 3)/2 - Sum[f[Floor[n/m]], {m, 2, n}]; f[0] = 1; Array[f, 55, 0] (* Robert G. Wilson v, Sep 26 2015 *)
a[n_] := If[n == 0, 1, FareySequence[n] // Length];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2022 *)
-
a(n)=1+sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 03 2013
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A005728(n): # based on second formula in A018805
if n == 0:
return 1
c, j = -2, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*A005728(k1)-3)
j, k1 = j2, n//j2
return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
A000248
Expansion of e.g.f. exp(x*exp(x)).
Original entry on oeis.org
1, 1, 3, 10, 41, 196, 1057, 6322, 41393, 293608, 2237921, 18210094, 157329097, 1436630092, 13810863809, 139305550066, 1469959371233, 16184586405328, 185504221191745, 2208841954063318, 27272621155678841, 348586218389733556, 4605223387997411873
Offset: 0
a(3)=10 since, for B={1,2,3}, we have 10 functions: 1 function of the type f:empty set->B; 6 functions of the type f:{x}->B\{x}; and 3 functions of the type f:{x,y}->B\{x,y}. - _Dennis P. Walsh_, Dec 05 2013
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).
- Alois P. Heinz, Table of n, a(n) for n = 0..541 (first 101 terms from T. D. Noe)
- Rudolf Berghammer, Jules Desharnais, and Michael Winter, Counting Specific Classes of Relations Regarding Fixed Points and Reflexive Points, arXiv:2505.00140 [cs.DM], 2025. See p. 24.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See p. 25.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 131.
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885. See Ex. 2.13.
- Bernhard Harris and Lowell Schoenfeld, The number of idempotent elements in symmetric semigroups, J. Combin. Theory, 3 (1967), 122-135.
- Bernhard Harris and Lowell Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Illinois Journal of Mathematics, Volume 12, Issue 2 (1968), 264-277.
- Gottfried Helms, Pascalmatrix tetrated
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 117
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000 terms)
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- John Riordan, Forests of labeled trees, J. Combin. Theory, 5 (1968), 90-103.
- John Riordan, Letter to N. J. A. Sloane, Oct. 1970
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- Emre Sen, Exceptional Sequences and Idempotent Functions, arXiv:1909.05887 [math.RT], 2019.
- Melvin Tainiter, A characterization of idempotents in semigroups, J. Combinat. Theory, 5 (1968), 370-373.
- Haoliang Wang and Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
-
A000248 := proc(n) local k; add(k^(n-k)*binomial(n, k), k=0..n); end; # Robert FERREOL, Oct 11 2007
a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j) *(j+1) *a(n-1-j), j=0..n-1) fi end: seq(a(n), n=0..20); # Zerinvary Lajos, Mar 28 2009
-
CoefficientList[Series[Exp[x Exp[x]],{x,0,20}],x]*Table[n!,{n,0,20}]
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[(Binomial[n - 1, j] + (n - 1) Binomial[n - 2, j]) a[j], {j, 0, n - 2}]; Table[a[n], {n, 0, 20}] (* David Callan, Oct 04 2013 *)
Flatten[{1,Table[Sum[Binomial[n,k]*(n-k)^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 13 2014 *)
Table[Sum[BellY[n, k, Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n)=sum(k=0,n,binomial(n,k)*(n-k)^k); \\ Paul D. Hanna, Jun 26 2009
-
x='x+O('x^66); Vec(serlaplace(exp(x*exp(x)))) \\ Joerg Arndt, Oct 06 2013
-
# uses[bell_matrix from A264428]
B = bell_matrix(lambda k: k+1, 20)
print([sum(B.row(n)) for n in range(20)]) # Peter Luschny, Sep 03 2019
In view of the multiple appearances of this sequence, I replaced the definition with the simple exponential generating function. -
N. J. A. Sloane, Apr 16 2018
A215703
A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 2, 6, 4, 2, 2, ...
0, 3, 12, 9, 27, 18, 15, 9, ...
0, 8, 52, 32, 156, 100, 80, 56, ...
0, 10, 240, 180, 1110, 650, 590, 360, ...
0, 54, 1188, 954, 8322, 4908, 5034, 2934, ...
0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
Columns k=1-17, 37 give:
A019590,
A005727,
A215524,
A179230,
A215704,
A215522,
A215705,
A179405,
A215706,
A215707,
A215708,
A215709,
A215691,
A215710,
A215643,
A215629,
A179505,
A211205.
Rows n=0+1, 2-10 give:
A000012,
A215841,
A215842,
A215834,
A215835,
A215836,
A215837,
A215838,
A215839,
A215840.
Cf.
A000081,
A000108,
A033917,
A211192,
A214569,
A214570,
A214571,
A216041,
A216281,
A216349,
A216350,
A216351,
A216368,
A222379,
A222380,
A277537,
A306679,
A306710,
A306726.
-
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
end():
A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
-
T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)
A179230
n-th derivative of x^(x^x) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 32, 180, 954, 6524, 45016, 360144, 3023640, 27617832, 271481880, 2775329232, 31188079272, 350827041000, 4441125248640, 54110311240512, 765546040603584, 9938498593229568, 156934910753107200, 2128783325724881280, 37775147271084647424
Offset: 0
Henryk Trappmann (bo198214(AT)gmail.com), Jul 03 2010
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^x) ), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 20 2012
-
Table[ D[ x^(x^x), {x, n}] /. x -> 1, {n, 0, 20}] (* Robert G. Wilson v, Jul 12 2010 *)
NestList[ Factor[ D[ #1, x]] &, x^x^x, 20] /. x -> 1 (* Robert G. Wilson v, Aug 10 2010 *)
Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
A179405
n-th derivative of x^(x^(x^x)) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 360, 2934, 26054, 269128, 3010680, 37616880, 504880992, 7387701672, 115228447152, 1929016301016, 34194883090440, 643667407174464, 12757366498618176, 266426229010029696, 5830527979298793024, 133665090871032478080, 3197905600674249843840
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^x)) ), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 20 2012
-
f[n_] := D[ x^(x^(x^x)), {x, n}] /. x -> 1; Array[f, 18, 0]
Range[0, 21]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 21}], x] (* Robert G. Wilson v, Feb 03 2013 *)
A087761
Expansion of (1-x)^(1/(x-1)).
Original entry on oeis.org
1, 1, 4, 21, 140, 1130, 10674, 115206, 1396016, 18739080, 275712840, 4408612560, 76070179272, 1408041937848, 27816773482848, 583970117197320, 12978149959718400, 304310928180279360, 7506092106055537344
Offset: 0
-
Table[Sum[BellY[n, k, Table[m! HarmonicNumber[m], {m, n}]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n)=if(n==0,1,(n-1)!*sum(k=0,n-1,(n-k)*sum(j=1,n-k,1/j)*a(k)/k!)) \\ Paul D. Hanna, Mar 17 2010; corrected Mar 19 2010
A215524
n-th derivative of (x^x)^x at x=1.
Original entry on oeis.org
1, 1, 4, 12, 52, 240, 1188, 6804, 38960, 253296, 1654560, 11816640, 85816608, 668005728, 5240582592, 44667645120, 365989405440, 3494595006720, 28075694694912, 325862541872640, 2101211758356480, 39605981661066240, 48568198208302080, 7549838510211486720, -66667098077331572736
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^x ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 24; CoefficientList[((x+1)^(x+1))^(x+1) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A277537
A(n,k) is the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 9, 8, 0, 0, 1, 1, 2, 9, 32, 10, 0, 0, 1, 1, 2, 9, 56, 180, 54, 0, 0, 1, 1, 2, 9, 56, 360, 954, -42, 0, 0, 1, 1, 2, 9, 56, 480, 2934, 6524, 944, 0, 0, 1, 1, 2, 9, 56, 480, 4374, 26054, 45016, -5112, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 0, 3, 9, 9, 9, 9, 9, ...
0, 0, 8, 32, 56, 56, 56, 56, ...
0, 0, 10, 180, 360, 480, 480, 480, ...
0, 0, 54, 954, 2934, 4374, 5094, 5094, ...
0, 0, -42, 6524, 26054, 47894, 60494, 65534, ...
Columns k=0..10 give
A000007,
A019590(n+1),
A005727,
A179230,
A179405,
A179505,
A211205,
A277538,
A277539,
A277540,
A277541.
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> n!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_] := b[n, k] = If[n==0, 1, If[k==0, 0, -Sum[Binomial[n-1, j]*b[j, k]*Sum[Binomial[n-j, i]*(-1)^i*b[n-j-i, k-1]*(i-1)!, {i, 1, n-j}], {j, 0, n-1}]]]; A[n_, k_] := b[n, Min[k, n]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, adapted from 2nd Maple prog. *)
A008296
Triangle of Lehmer-Comtet numbers of the first kind.
Original entry on oeis.org
1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800
Offset: 1
Triangle begins:
1;
1, 1;
-1, 3, 1;
2, -1, 6, 1;
-6, 0, 5, 10, 1;
24, 4, -15, 25, 15, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139.
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
- Tian-Xiao He and Yuanziyi Zhang, Centralizers of the Riordan Group, arXiv:2105.07262 [math.CO], 2021.
- D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
-
for n from 1 to 20 do for k from 1 to n do
printf(`%d,`, add(binomial(l,k)*k^(l-k)*Stirling1(n,l), l=k..n)) od: od:
# second program:
A008296 := proc(n, k) option remember; if k=1 and n>1 then (-1)^n*(n-2)! elif n=k then 1 else (n-1)*procname(n-2, k-1) + (k-n+1)*procname(n-1, k) + procname(n-1, k-1) end if end proc:
seq(print(seq(A008296(n, k), k=1..n)), n=1..7); # Mélika Tebni, Aug 22 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!;
a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1,k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]]
(* Jean-François Alcover, Apr 29 2011 *)
-
{T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */
-
# uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016
A025566
a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 1, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644, 271219, 787333, 2290200, 6673662, 19478091, 56930961, 166613280, 488176938, 1431878079, 4203938697, 12353600427, 36331804089, 106932444885, 314946659951, 928213563878
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2100
- Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
- C. Dalfó, M. A. Fiol, and N. López, New results for the Mondrian art problem, arXiv:2007.09639 [math.CO], 2020.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Christian Krattenthaler, Daniel Yaqubi, Some determinants of path generating functions, II, arXiv:1802.05990 [math.CO], 2018; Adv. Appl. Math. 101 (2018), 232-265.
- Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
-
List([0..30],i->Sum([0..Int(i/2)],k->Binomial(i-2,k)*Binomial(i-k,k))); # Muniru A Asiru, Mar 09 2019
-
seq( sum('binomial(i-2,k)*binomial(i-k,k)', 'k'=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
-
CoefficientList[Series[x+(2x(x-1))/(1-3x-Sqrt[1-2x-3x^2]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)
Showing 1-10 of 40 results.
Comments