A121452
Exponential generating function (1-x^2)^(-1/x).
Original entry on oeis.org
1, 1, 1, 4, 13, 71, 391, 2836, 21729, 198829, 1939501, 21515836, 254169301, 3319328299, 45979476635, 691443303916, 10979537304961, 186915474027321, 3345563762493049, 63613875064443796, 1266776073045809341
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 71*x^5/5! + 391*x^6/6! + ... such that 1/A(x)^x = 1 - x^2.
The logarithm of the e.g.f. is given by the series:
log(A(x)) = (1-x)*(x + x*(x+x/2) + x^2*(x+x^2/2+x^3/3) + x^3*(x+x^2/2+x^3/3+x^4/4) + x^4*(x+x^2/2+x^3/3+x^4/4+x^5/5) + ...)
log(A(x)) = x + x^3/2 + x^5/3 + x^7/4 + x^9/5 + ...
-
With[{nn=20},CoefficientList[Series[(1-x^2)^(-1/x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Sep 28 2013 *)
-
{a(n)=n!*polcoeff((1-x^2 +x^2*O(x^n))^(-1/x),n)}
-
{a(n)=n!*polcoeff(exp((1-x)*sum(m=0,n,x^m*sum(k=1,m+1,x^k/k)+x*O(x^n))),n)} /* Paul D. Hanna, May 03 2012 */
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x^2)/x))) \\ Seiichi Manyama, May 01 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, (i+1)\2, (2*j-1)/j*v[i-2*j+2]/(i-2*j+1)!)); v; \\ Seiichi Manyama, May 01 2022
-
a(n) = n!*sum(k=0, n\2, abs(stirling(n-k, n-2*k, 1))/(n-k)!); \\ Seiichi Manyama, May 01 2022
A305306
Expansion of e.g.f. 1/(1 + log(1 - x)/(1 - x)).
Original entry on oeis.org
1, 1, 5, 35, 324, 3744, 51902, 839362, 15513096, 322550616, 7451677632, 189366303840, 5249764639248, 157666361452560, 5099445234111888, 176713626295062384, 6531995374500741888, 256537368987293878272, 10667901271715707803264, 468261481657502075856768, 21635865693957558515860224
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 35*x^3/3! + 324*x^4/4! + 3744*x^5/5! + 51902*x^6/6! + ...
-
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
b:= proc(n) option remember; `if`(n=0, 1,
add(H(j)*b(n-j), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
nmax = 20; CoefficientList[Series[1/(1 + Log[1 - x]/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[1/(1 - Sum[HarmonicNumber[k] x^k , {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[HarmonicNumber[k] a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)/(1-x)))) \\ Seiichi Manyama, May 10 2023
A235385
E.g.f.: exp( Sum_{n>=1} H(n) * x^(2*n-1)/(2*n-1) ) where H(n) is the n-th harmonic number.
Original entry on oeis.org
1, 1, 1, 4, 13, 75, 415, 3160, 24545, 233509, 2323165, 26599780, 321545365, 4312503655, 61219938915, 942271981240, 15340303899265, 266671144108265, 4892612440317145, 94840103781865060, 1934826541931748925, 41387703314570495875, 928953515444722956775, 21738929496091877729400
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 75*x^5/5! +...
where
log(A(x)) = x + (1+1/2)*x^3/3 + (1+1/2+1/3)*x^5/5 + (1+1/2+1/3+1/4)*x^7/7 + (1+1/2+1/3+1/4+1/5)*x^9/9 + (1+1/2+1/3+1/4+1/5+1/6)*x^11/11 +...
Explicitly,
log(A(x)) = x + 1/2*x^3 + 11/30*x^5 + 25/84*x^7 + 137/540*x^9 + 49/220*x^11 + 363/1820*x^13 + 761/4200*x^15 +...
Equivalently,
log(A(x)) = x + 3*x^3/3! + 44*x^5/5! + 1500*x^7/7! + 92064*x^9/9! + 8890560*x^11/11! + 1241982720*x^13/13! + 236938141440*x^15/15! +...
-
{H(n)=sum(k=1,n,1/k)}
{a(n)=local(A=1);A=exp(sum(k=1,n\2+1,H(k)*x^(2*k-1)/(2*k-1))+x*O(x^n));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A073478
Expansion of (1+x)^(1/(1-x)).
Original entry on oeis.org
1, 1, 2, 9, 44, 290, 2154, 19026, 186752, 2070792, 25119720, 334960560, 4824346152, 75100568088, 1250180063664, 22235660291880, 419595248663040, 8388866239417920, 176823515257447104, 3923498370610292544
Offset: 0
E.g.f.: (1+x)^(1/(1-x)) = 1 + x + 2*x^2/2! + 9*x^3/3! + 44*x^4/4! + 290*x^5/5! + 2154*x^6/6! + 19026*x^7/7! + 186752*x^8/8! + 2070792*x^9/9! + ...
which may be written as
(1+x)^(1/(1-x)) = exp(x + x^2*(1+x)/2 + x^3*(1+x+x^2)/3 + x^4*(1+x+x^2+x^3)/4 + x^5*(1+x+x^2+x^3+x^4)/5 + ... + x^n*((1-x^n)/(1-x))/n + ...).
-
CoefficientList[Series[(1+x)^(1/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 21 2014 *)
-
{a(n)=n!*polcoeff((1+x +x*O(x^n))^(1/(1-x)),n)} \\ Paul D. Hanna, Jan 08 2014
-
{a(n)=local(A);A=exp(sum(m=1,n,sum(k=1,m,-(-1)^k/k)*x^m)+x*O(x^n)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Jan 08 2014
A300491
Expansion of e.g.f. log(1 - log(1 - x)/(1 - x)).
Original entry on oeis.org
0, 1, 2, 4, 9, 28, 140, 936, 6902, 54160, 467784, 4578000, 50434032, 609309504, 7921524624, 110242136928, 1643101763760, 26192405980416, 444523225673472, 7989603260143104, 151483589818925184, 3022296286833907200, 63326051483436129024, 1390571693776506751488
Offset: 0
log(1 - log(1 - x)/(1 - x)) = x/1! + 2*x^2/2! + 4*x^3/3! + 9*x^4/4! + 28*x^5/5! + 140*x^6/6! + 936*x^7/7! + ...
-
b:= proc(n) option remember; `if`(n<2, n, n*b(n-1)+(n-1)!) end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-add(
a(j)*j*binomial(n, j)*b(n-j), j=1..n-1)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 07 2018
-
nmax = 23; CoefficientList[Series[Log[1 - Log[1 - x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n! HarmonicNumber[n] - Sum[k Binomial[n, k] (n - k)! HarmonicNumber[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
A307419
Triangle of harmonic numbers T(n, k) = [t^n] Gamma(n+k+t)/Gamma(k+t) for n >= 0 and 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 11, 9, 1, 0, 50, 71, 18, 1, 0, 274, 580, 245, 30, 1, 0, 1764, 5104, 3135, 625, 45, 1, 0, 13068, 48860, 40369, 11515, 1330, 63, 1, 0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1, 0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 3, 1]
3: [0, 11, 9, 1]
4: [0, 50, 71, 18, 1]
5: [0, 274, 580, 245, 30, 1]
6: [0, 1764, 5104, 3135, 625, 45, 1]
7: [0, 13068, 48860, 40369, 11515, 1330, 63, 1]
8: [0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1]
9: [0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1]
Col: A000254, A001706, A001713, A001719, ...
-
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A307419Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+x)/GAMMA(k+x);
ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k),k=0..n) end: seq(A307419Row(n), n=0..9);
# Alternatively by the egf for column k:
A307419Col := proc(n, len) local f, egf, ser; f := (n,x) -> (log(1-x)/(x-1))^n/n!;
egf := (n,x) -> diff(f(n, x), [x$n]); ser := n -> series(egf(n, x), x, len);
seq(k!*coeff(ser(n), x, k), k=0..len-1) end:
seq(print(A307419Col(k, 10)), k=0..9); # Peter Luschny, Apr 12 2019
T := (n, k) -> add((-1)^(n-j)*binomial(j, k)*Stirling1(n, j)*k^(j-k), j = k..n):
seq(seq(T(n,k), k = 0..n), n = 0..9); # Peter Luschny, Jun 09 2022
-
f[n_, x_] := f[n, x] = D[(Log[1 - x]/(x - 1))^n/n!, {x, n}];
T[n_, k_] := (n - k)! SeriesCoefficient[f[k, x], {x, 0, n - k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 13 2019 *)
-
T(n,k):=n!*sum((binomial(k+i-1,i)*abs(stirling1(n-i,k)))/(n-i)!,i,0,n-k);
-
taylor((1-t)^(-x/(1-t)),t,0,7,x,0,7);
-
T(n,k):=coeff(taylor(gamma(n+k+t)/gamma(k+t),t,0,10),t,k);
-
T(n, k) = n!*sum(i=0, n-k, abs(stirling(n-i, k, 1))*binomial(i+k-1, i)/(n-i)!); \\ Michel Marcus, Apr 13 2019
A308346
Expansion of e.g.f. 1/(1 - x)^log(1 - x).
Original entry on oeis.org
1, 0, -2, -6, -10, 20, 352, 2772, 18132, 104400, 469608, 238920, -35811048, -730972944, -11436661728, -164609993520, -2294024595312, -31488879303552, -426338226719904, -5626751283423072, -70000948158061728, -745703905072996800, -4142683990211677440, 110386551348875714880
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^Log(1/(1-x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 21 2019
-
E:= 1/(1-x)^log(1-x):
S:= series(E,x,31):
seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, May 22 2019
-
nmax = 23; CoefficientList[Series[1/(1 - x)^Log[1 - x], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] HermiteH[k, 0], {k, 0, n}], {n, 0, 23}]
a[n_] := a[n] = -2 Sum[(k - 1)! HarmonicNumber[k - 1] Binomial[n - 1, k - 1] a[n - k], {k, 2, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
-
a(n) = sum(k=0, n, abs(stirling(n, k, 1))*polhermite(k, 0)); \\ Michel Marcus, May 21 2019
-
m = 30; T = taylor((1-x)^log(1/(1-x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 21 2019
A347339
E.g.f.: exp( (exp(x) - 1) * exp(exp(x) - 1) ).
Original entry on oeis.org
1, 1, 4, 20, 123, 902, 7656, 73509, 785154, 9213324, 117624569, 1621028312, 23959376436, 377730250003, 6322478398476, 111904530008040, 2087093471665987, 40891426070289970, 839329531471890724, 18004595602417946685, 402747680140030433886, 9376084240910510840672, 226760664399026618376569
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1,
add(g(n-j)*j*binomial(n-1, j-1), j=1..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Aug 27 2021
-
nmax = 22; CoefficientList[Series[Exp[(Exp[x] - 1) Exp[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (BellB[k + 1] - BellB[k]) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp((exp(x)-1)*exp(exp(x)-1)))) \\ Michel Marcus, Aug 27 2021
A235776
E.g.f.: exp( Sum_{n>=1} x^(2*n) * Sum_{k=1..n} 1/k^2 ).
Original entry on oeis.org
1, 2, 42, 2000, 170660, 22741992, 4344779208, 1123066676160, 376718037181200, 158895919895100960, 82222168141278271392, 51172838316787466103552, 37687233953299944682503744, 32399590493755848692815785600, 32140659218911596667452247171200
Offset: 0
E.g.f.: A(x) = 1 + 2*x^2/2! + 42*x^4/4! + 2000*x^6/6! + 170660*x^8/8! +...
such that
log(A(x)) = x^2 + (1+1/4)*x^4 + (1+1/4+1/9)*x^6 + (1+1/4+1/9+1/16)*x^8 + (1+1/4+1/9+1/16+1/25)*x^10 + (1+1/4+1/9+1/16+1/25+1/36)*x^12 +...
Explicitly,
log(A(x)) = x^2 + 5/4*x^4 + 49/36*x^6 + 205/144*x^8 + 5269/3600*x^10 + 5369/3600*x^12 + 266681/176400*x^14 +...+ [Sum_{k=1..n} 1/k^2]*x^(2*n) +...
-
nmax = 20; CoefficientList[Series[Exp[PolyLog[2,x]/(1-x)], {x, 0, nmax}], x] * (2*Range[0, nmax])! (* Vaclav Kotesovec, Oct 28 2024 *)
-
{a(n)=local(A=1); A=exp(sum(m=1, n\2+1, sum(k=1, m, 1/k^2)*x^(2*m))+x*O(x^n)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(2*n), ", "))
A336289
a(0) = 1; a(n) = n! * Sum_{k=1..n} binomial(n-1,k-1) * (k-1)! * H(k) * a(n-k) / (n-k)!, where H(k) is the k-th harmonic number.
Original entry on oeis.org
1, 1, 5, 55, 1054, 31046, 1299386, 73211510, 5338080280, 488727800664, 54865512897432, 7408400404206792, 1184230737883333680, 221121985937352261360, 47683177920267470877648, 11758982455716373002624816, 3287966057434181416523799936
Offset: 0
-
a[0] = 1; a[n_] := a[n] = n! Sum[Binomial[n - 1, k - 1] (k - 1)! HarmonicNumber[k] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[Exp[Sum[HarmonicNumber[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
nmax = 16; CoefficientList[Series[Exp[Log[1 - x]^2/2 + PolyLog[2, x]], {x, 0, nmax}], x] Range[0, nmax]!^2
Showing 1-10 of 16 results.
Comments