A346921
Expansion of e.g.f. 1 / (1 - log(1 - x)^2 / 2).
Original entry on oeis.org
1, 0, 1, 3, 17, 110, 874, 8064, 85182, 1012248, 13369026, 194245590, 3079135806, 52880064588, 978038495316, 19381794788160, 409702099828104, 9201877089355584, 218832476773294008, 5493266481129425064, 145153549897858762776, 4027310838211114515600
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 - Log[1 - x]^2/2), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^2/2))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/2^k); \\ Seiichi Manyama, May 06 2022
A347001
Expansion of e.g.f. exp( log(1 - x)^2 / 2 ).
Original entry on oeis.org
1, 0, 1, 3, 14, 80, 544, 4284, 38310, 383256, 4239006, 51345690, 675770028, 9600349824, 146396925648, 2384700728760, 41320373582652, 758780222426592, 14718569154071964, 300706641183038292, 6453691377726073128, 145154958710291611200, 3414131149418742544320
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/(2^k*k!)); \\ Seiichi Manyama, May 06 2022
A305307
Expansion of e.g.f. 1/(1 - log(1 + x)/(1 - x)).
Original entry on oeis.org
1, 1, 3, 17, 120, 1084, 11642, 146446, 2101656, 33958344, 609431232, 12033015840, 259163792016, 6047213451408, 151953760489008, 4091057804809104, 117485988199385088, 3584814699783432960, 115816462543697120640, 3949619921174717629056, 141780511159572486530304, 5344008726418981985707776
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1084*x^5/5! + 11642*x^6/6! + ...
-
g:= proc(n) g(n):= `if`(n=1, 0, g(n-1))-(-1)^n/n end:
b:= proc(n) option remember; `if`(n=0, 1,
add(g(j)*b(n-j), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
nmax = 21; CoefficientList[Series[1/(1 - Log[1 + x]/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[1/(1 - Sum[Sum[(-1)^(j + 1)/j, {j, 1, k}] x^k , {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[((-1)^(k + 1) LerchPhi[-1, 1, k + 1] + Log[2]) a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 21}]
A128044
a(n) = numerator of b(n), where b(1) = 1, b(n) = Sum_{k=1..n-1} b(n-k) * H(k); H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.
Original entry on oeis.org
1, 1, 5, 35, 27, 156, 25951, 419681, 646379, 13439609, 5544403, 56359019, 109370096651, 218981057573, 1073115579569, 334684898286103, 8505202310547841, 515483074900523, 712333151156230489
Offset: 1
1, 1, 5/2, 35/6, 27/2, 156/5, 25951/360, 419681/2520, 646379/1680, 13439609/15120, 5544403/2700, 56359019/11880, ...
-
f[l_List] := Block[{n = Length[l] + 1},Append[l, Sum[l[[n - k]]*HarmonicNumber[k], {k, n - 1}]]];Numerator[Nest[f, {1}, 20]] (* Ray Chandler, Feb 12 2007 *)
A128045
a(n) = denominator of b(n), where b(1) = 1, b(n) = Sum_{k=1..n-1} b(n-k) * H(k); H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.
Original entry on oeis.org
1, 1, 2, 6, 2, 5, 360, 2520, 1680, 15120, 2700, 11880, 9979200, 8648640, 18345600, 2476656000, 27243216000, 714714000, 427508928000, 1160381376000, 1055947052160000, 22174888095360000, 38718058579200, 141031842336000
Offset: 1
1, 1, 5/2, 35/6, 27/2, 156/5, 25951/360, 419681/2520, 646379/1680, 13439609/15120, 5544403/2700, 56359019/11880, ...
-
f[l_List] := Block[{n = Length[l] + 1},Append[l, Sum[l[[n - k]]*HarmonicNumber[k], {k, n - 1}]]];Denominator[Nest[f, {1}, 24]] (* Ray Chandler, Feb 12 2007 *)
A362911
Expansion of e.g.f. 1/( 1 - (1 + x) * log(1 + x) ).
Original entry on oeis.org
1, 1, 3, 11, 60, 384, 3062, 27838, 293416, 3447768, 45277392, 651587760, 10254900048, 174557518992, 3203361670896, 62938642659504, 1319693558377728, 29390794198726656, 693223221342879360, 17256288944072200320, 452215395177034040064
Offset: 0
A362912
Expansion of e.g.f. 1/( 1 - (exp(x) - 1) * exp(exp(x) - 1) ).
Original entry on oeis.org
1, 1, 5, 34, 303, 3371, 45016, 701401, 12490057, 250215916, 5569582777, 136371309999, 3642603629462, 105405416033607, 3284722016179597, 109672448519030698, 3905936524326557659, 147802493781420536423, 5921911678533323178312
Offset: 0
Showing 1-7 of 7 results.
Comments