A215703
A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 2, 6, 4, 2, 2, ...
0, 3, 12, 9, 27, 18, 15, 9, ...
0, 8, 52, 32, 156, 100, 80, 56, ...
0, 10, 240, 180, 1110, 650, 590, 360, ...
0, 54, 1188, 954, 8322, 4908, 5034, 2934, ...
0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
Columns k=1-17, 37 give:
A019590,
A005727,
A215524,
A179230,
A215704,
A215522,
A215705,
A179405,
A215706,
A215707,
A215708,
A215709,
A215691,
A215710,
A215643,
A215629,
A179505,
A211205.
Rows n=0+1, 2-10 give:
A000012,
A215841,
A215842,
A215834,
A215835,
A215836,
A215837,
A215838,
A215839,
A215840.
Cf.
A000081,
A000108,
A033917,
A211192,
A214569,
A214570,
A214571,
A216041,
A216281,
A216349,
A216350,
A216351,
A216368,
A222379,
A222380,
A277537,
A306679,
A306710,
A306726.
-
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
end():
A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
-
T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)
A215524
n-th derivative of (x^x)^x at x=1.
Original entry on oeis.org
1, 1, 4, 12, 52, 240, 1188, 6804, 38960, 253296, 1654560, 11816640, 85816608, 668005728, 5240582592, 44667645120, 365989405440, 3494595006720, 28075694694912, 325862541872640, 2101211758356480, 39605981661066240, 48568198208302080, 7549838510211486720, -66667098077331572736
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^x ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 24; CoefficientList[((x+1)^(x+1))^(x+1) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A277537
A(n,k) is the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 9, 8, 0, 0, 1, 1, 2, 9, 32, 10, 0, 0, 1, 1, 2, 9, 56, 180, 54, 0, 0, 1, 1, 2, 9, 56, 360, 954, -42, 0, 0, 1, 1, 2, 9, 56, 480, 2934, 6524, 944, 0, 0, 1, 1, 2, 9, 56, 480, 4374, 26054, 45016, -5112, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 0, 3, 9, 9, 9, 9, 9, ...
0, 0, 8, 32, 56, 56, 56, 56, ...
0, 0, 10, 180, 360, 480, 480, 480, ...
0, 0, 54, 954, 2934, 4374, 5094, 5094, ...
0, 0, -42, 6524, 26054, 47894, 60494, 65534, ...
Columns k=0..10 give
A000007,
A019590(n+1),
A005727,
A179230,
A179405,
A179505,
A211205,
A277538,
A277539,
A277540,
A277541.
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> n!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_] := b[n, k] = If[n==0, 1, If[k==0, 0, -Sum[Binomial[n-1, j]*b[j, k]*Sum[Binomial[n-j, i]*(-1)^i*b[n-j-i, k-1]*(i-1)!, {i, 1, n-j}], {j, 0, n-1}]]]; A[n_, k_] := b[n, Min[k, n]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, adapted from 2nd Maple prog. *)
A215522
n-th derivative of (x^x)^(x^x) at x=1.
Original entry on oeis.org
1, 1, 4, 18, 100, 650, 4908, 41090, 382520, 3863808, 42409440, 497972112, 6259762320, 83343114504, 1175904241848, 17442325040520, 272149555445760, 4438451554802880, 75714874759039104, 1343817666163911168, 24837691533530152320, 475811860099666527360
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^(x^x) ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 21; CoefficientList[(x+1)^((x+1)^(x+2)) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A179505
n-th derivative of x^(x^(x^(x^x))) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 4374, 47894, 574888, 7829424, 116392080, 1901059512, 33564909432, 639562529424, 13047133134840, 283976169754440, 6563364026374464, 160538113862231808, 4141949353327046592, 112396373034208003008, 3199752121483607518080
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^(x^x))) ), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 21 2012
-
f[n_] := D[x^(x^(x^(x^x))), {x, n}] /. x -> 1; Array[f, 16, 0]
Range[0, 20]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 20}], x] (* Robert G. Wilson v, Feb 03 2013 *)
A215704
n-th derivative of ((x^x)^x)^x at x=1.
Original entry on oeis.org
1, 1, 6, 27, 156, 1110, 8322, 70098, 646272, 6333336, 66712680, 745731360, 8780828328, 108873486072, 1413807287760, 19157627737080, 270460073295360, 3965693824244160, 60266513065134528, 947644484349584448, 15389579447794454400, 257702782790624613120
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, ((x^x)^x)^x ), x, n+1), x, n):
seq(a(n), n=0..25);
A211205
n-th derivative of x^(x^(x^(x^(x^x)))) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 5094, 60494, 823528, 12365424, 206078880, 3745686912, 74083090872, 1579529362944, 36165466533000, 884104045301640, 22992315801392064, 633547543117707648, 18439576158792912192, 565162707747635408448, 18194047307015185486080
Offset: 0
Cf.
A005727,
A008405,
A176118,
A179230,
A179405,
A179505,
A215522,
A215524,
A215629,
A215643,
A215691,
A215704,
A215705,
A215706,
A215707,
A215708,
A215709,
A215710,
A215522,
A295106.
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^(x^(x^x))))), x, n+1), x, n):
seq(a(n), n=0..20);
-
NestList[ Factor[ D[#1, x]] &, x^x^x^x^x^x, 9] /. (x -> 1) (* or quicker *)
Range[0, 20]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 20}], x]
A215643
n-th derivative of x^((x^(x^x))^x) at x=1.
Original entry on oeis.org
1, 1, 2, 15, 104, 890, 8814, 100660, 1288048, 18337680, 286674960, 4882660464, 89880715704, 1777384045944, 37552294300416, 843830334815640, 20086549955304384, 504750167170162944, 13348550475903813120, 370499740676381737728, 10766442934111876381440
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, x^((x^(x^x))^x) ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 20;
CoefficientList[(x+1)^(((x+1)^((x+1)^(x+1)))^(x+1)) + O[x]^(m+1), x]* Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A215629
n-th derivative of x^(x^((x^x)^x)) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 80, 660, 6714, 77084, 1005640, 14572944, 233086920, 4066783512, 76906345944, 1566049091568, 34153725715368, 793996577407560, 19595885746343808, 511550462381982528, 14080034085212120256, 407434430977558009344, 12363449947108075756800
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^((x^x)^x)) ), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 20;
CoefficientList[(x+1)^((x+1)^(((x+1)^(x+1))^(x+1))) + O[x]^(m+1), x]* Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
A215691
n-th derivative of (x^x)^(x^(x^x)) at x=1.
Original entry on oeis.org
1, 1, 4, 18, 124, 950, 8688, 89600, 1038392, 13309272, 186471480, 2837173152, 46466835072, 815532508440, 15246845864040, 302533865599800, 6344720827608384, 140208886623418752, 3254819745378435264, 79172189409906466560, 2013138139856523598080
Offset: 0
-
a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^(x^(x^x))), x, n+1), x, n):
seq(a(n), n=0..30);
-
m = 20;
CoefficientList[(x+1)^((x+1)^((x+1)^(x+1)+1)) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)
Showing 1-10 of 18 results.
Comments