A033917
Coefficients of iterated exponential function defined by y(x) = x^y(x) for e^-e < x < e^(1/e), expanded about x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 5094, 65534, 984808, 16992144, 330667680, 7170714672, 171438170232, 4480972742064, 127115833240200, 3889913061111240, 127729720697035584, 4479821940873927168, 167143865005981109952, 6610411989494027218368, 276242547290322145178880
Offset: 0
-
a:= n-> add(Stirling1(n, k)*(k+1)^(k-1), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 31 2012
-
mx = 20; Table[ i! SeriesCoefficient[ InverseSeries[ Series[ y^(1/y), {y, 1, mx}]], i], {i, 0, n}] (* modified by Robert G. Wilson v, Feb 03 2013 *)
CoefficientList[Series[-LambertW[-Log[1+x]]/Log[1+x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
-
Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)
a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*(A+x*O(x^n))^k)*x^m/m!)); n!*polcoeff(A, n)
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 09 2013
A277537
A(n,k) is the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 9, 8, 0, 0, 1, 1, 2, 9, 32, 10, 0, 0, 1, 1, 2, 9, 56, 180, 54, 0, 0, 1, 1, 2, 9, 56, 360, 954, -42, 0, 0, 1, 1, 2, 9, 56, 480, 2934, 6524, 944, 0, 0, 1, 1, 2, 9, 56, 480, 4374, 26054, 45016, -5112, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 0, 3, 9, 9, 9, 9, 9, ...
0, 0, 8, 32, 56, 56, 56, 56, ...
0, 0, 10, 180, 360, 480, 480, 480, ...
0, 0, 54, 954, 2934, 4374, 5094, 5094, ...
0, 0, -42, 6524, 26054, 47894, 60494, 65534, ...
Columns k=0..10 give
A000007,
A019590(n+1),
A005727,
A179230,
A179405,
A179505,
A211205,
A277538,
A277539,
A277540,
A277541.
-
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> n!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_] := b[n, k] = If[n==0, 1, If[k==0, 0, -Sum[Binomial[n-1, j]*b[j, k]*Sum[Binomial[n-j, i]*(-1)^i*b[n-j-i, k-1]*(i-1)!, {i, 1, n-j}], {j, 0, n-1}]]]; A[n_, k_] := b[n, Min[k, n]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, adapted from 2nd Maple prog. *)
A295027
T(n,k) is (1/n) times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 2, 34, 36, 24, 0, 9, 150, 330, 240, 120, 0, -6, 938, 2790, 3120, 1800, 720, 0, 118, 5509, 28014, 38220, 31080, 15120, 5040, 0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320, 0, 4716, 297648, 3459324, 7877520, 8968680, 6804000, 3840480, 1451520, 362880
Offset: 1
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 2, 34, 36, 24;
0, 9, 150, 330, 240, 120;
0, -6, 938, 2790, 3120, 1800, 720;
0, 118, 5509, 28014, 38220, 31080, 15120, 5040;
0, -568, 40584, 294504, 535416, 504000, 332640, 141120, 40320;
...
Main diagonal gives
A104150 (for n>0).
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> (n-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/n:
seq(seq(T(n, k), k=1..n), n=1..12);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := (n - 1)!*SeriesCoefficient[f[k] - f[k - 1], {x, 0, n}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]])/n;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
A290023
a(n) is the 2n-th derivative of the difference between the n-th tetration of x (power tower of order n) and its predecessor (or 0 if n=0) at x=1.
Original entry on oeis.org
1, 0, 8, 900, 224112, 78775200, 40518181440, 28340179227360, 26078095792869120, 30544708065077606400, 44428404658605222528000, 78604530683773395984883200, 166295474965751756924207462400, 414658685362517268992110471680000, 1203746810444949373635048911870976000
Offset: 0
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
a:= n-> (2*n)!*coeff(series(f(n)-f(n-1), x, 2*n+1), x, 2*n):
seq(a(n), n=0..15);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
a:= n-> b(2*n, n) -`if`(n=0, 0, b(2*n, n-1)):
seq(a(n), n=0..15);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
a[n_] := (2*n)!*SeriesCoefficient[f[n] - f[n - 1], {x, 0, 2*n}];
Table[a[n], {n, 0, 15}]
(* Second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
a[n_] := b[2*n, n] - If[n == 0, 0, b[2*n, n - 1]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
A298605
T(n,k) is 1/(k-1)! times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 10, 85, 30, 5, 0, 54, 450, 330, 60, 6, 0, -42, 3283, 3255, 910, 105, 7, 0, 944, 22036, 37352, 12740, 2072, 168, 8, 0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9, 0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10
Offset: 1
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 3;
0, 8, 12, 4;
0, 10, 85, 30, 5;
0, 54, 450, 330, 60, 6;
0, -42, 3283, 3255, 910, 105, 7;
0, 944, 22036, 37352, 12740, 2072, 168, 8;
0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9;
0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10;
...
-
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!/(k-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..10);
-
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!/(k - 1)!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten
(* Second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n-1, j]* b[j, k]*Sum[Binomial[n - j, i]* (-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k-1, n]]])/(k-1)!;
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
Showing 1-5 of 5 results.
Comments