cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295028 A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
Offset: 1

Views

Author

Alois P. Heinz, Nov 12 2017

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    1,     1,     1,      1,      1,      1, ...
  0,   1,    3,     3,     3,      3,      3,      3, ...
  0,   2,    8,    14,    14,     14,     14,     14, ...
  0,   2,   36,    72,    96,     96,     96,     96, ...
  0,   9,  159,   489,   729,    849,    849,    849, ...
  0,  -6,  932,  3722,  6842,   8642,   9362,   9362, ...
  0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
		

Crossrefs

Main diagonal gives A136461(n-1).

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
          -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
          (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
        end:
    A:= (n, k)-> b(n, min(k, n))/n:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
    A[n_, k_] := b[n, Min[k, n]]/n;
    Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)

Formula

A(n,k) = 1/n * [(d/dx)^n x^^k]_{x=1}.
A(n,k) = (n-1)! * [x^n] (x+1)^^k.
A(n,k) = Sum_{i=0..min(n,k)} A295027(n,i).
A(n,k) = 1/n * A277537(n,k).