A295078 Numbers n > 1 such that n and sigma(n) have the same smallest and simultaneously largest prime factors.
6, 28, 40, 84, 120, 140, 224, 234, 270, 420, 468, 496, 672, 756, 936, 1080, 1120, 1170, 1372, 1488, 1550, 1638, 1782, 1862, 2176, 2340, 2480, 2574, 3100, 3250, 3276, 3360, 3472, 3564, 3724, 3744, 3780, 4116, 4464, 4598, 4650, 4680, 5148, 5456, 5586, 6048, 6200
Offset: 1
Keywords
Examples
40 = 2^3*5 and sigma(40) = 90 = 2*3^2*5 hence 40 is in the sequence. The first odd term is 29713401 = 3^2 * 23^2 * 79^2; sigma(29713401) = 45441669 = 3*7^3*13*43*79.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [2..10000] | Minimum(PrimeDivisors(n)) eq Minimum(PrimeDivisors(SumOfDivisors(n))) and Maximum(PrimeDivisors(n)) eq Maximum(PrimeDivisors(SumOfDivisors(n)))]
-
Maple
filter:= proc(n) local f, s; uses numtheory; f:= factorset(n); s:= factorset(sigma(n)); min(f) = min(s) and max(f)=max(s) end proc: select(filter, [$2..10^4]); # Robert Israel, Jan 08 2018
-
Mathematica
Rest@ Select[Range@ 6200, SameQ @@ Map[{First@ #, Last@ #} &@ FactorInteger[#][[All, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
-
PARI
isok(n) = if (n > 1, my(fn = factor(n)[,1], fs = factor(sigma(n))[,1]); (vecmin(fn) == vecmin(fs)) && (vecmax(fn) == vecmax(fs))); \\ Michel Marcus, Jan 08 2018
Extensions
Added condition n>1 to definition. Corrected b-file. - N. J. A. Sloane, Feb 03 2018
Comments